Biodisponibilidade e classificação de compostos fenólicos
DOI:
https://doi.org/10.33233/nb.v18i1.1432Resumo
Os compostos fenólicos são metabólitos secundários sintetizados abundantemente no reino vegetal e amplamente estudados. Atuam principalmente como agentes de defesa em resposta a estresses causados aos frutos e vegetais, conferindo-os adstringência, coloração, sabor e aroma. O consumo frequente destes compostos por meio de alimentos tem demonstrado benefícios na promoção da saúde e no possível auxílio no combate a doenças como Diabetes Mellitus tipo 2, obesidade, doenças cardiovasculares, doenças neurodegenerativas e câncer. Possuem propriedades anti-inflamatórias e antioxidantes, além de auxiliarem na modulação da microbiota intestinal. Quimicamente são constituídos por anéis aromáticos ligados a hidroxilas, sendo categorizados em flavonóides, ácidos fenólicos, estilbenos, lignanas, entre outros. Para exercerem seus benefícios é necessária uma eficiente bioacessibilidade e biodisponibilidade, que são dependentes de diversos fatores associados ao alimento e í fisiologia humana. Desta forma, este trabalho visa revisar publicações relacionadas aos compostos fenólicos e a relação destes com o organismo humano após ingeridos.
Palavras-chave: compostos fenólicos, bioacessibilidade, biodisponibilidade.
Referências
Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B. Resources and biological activities of natural polyphenols. Nutrients. 2014;6(12):6020-6047. https://doi.org/10.3390/nu6126020
Bresciani L, Martini D, Mena P et al. Absorption profile of (poly)phenolic compounds after consumption of three food supplements containing 36 different fruits, vegetables, and berries. Nutrients. 2017;9(3):194. https://doi.org/10.3390/nu9030194
Soares SE. Ãcidos fenólicos como antioxidantes. Rev Nutr 2002;15(1):71-81. https://doi.org/10.1590/s1415-52732002000100008
Dai P, Zhu L, Luo F et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. The AAPS Journal 2015;17(3):723-36. https://doi.org/10.1208/s12248-015-9732-x
Lin D, Xiao M, Zhao J et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016; 21(10):1374. https://doi.org/10.3390/molecules21101374
Boudet A-M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007;68:2722-35. https://doi.org/10.1016/j.phytochem.2007.06.012
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8(2):78. https://doi.org/10.3390/nu8020078
Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18(2):2328-75. https://doi.org/10.3390/molecules18022328
Farah A, Donangelo CM. Phenolic compounds in coffee. Braz J Plant Physiol 2006;18(1):23-36. https://doi.org/10.1590/s1677-04202006000100003
Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 2010;11:705-19. https://doi.org/10.1111/j.1364-3703.2010.00625.x
Klepacka J, Gujska E, Michalak J. Phenolic compounds as cultivar- and variety-distinguishing factors in some plant products Plant Foods Hum Nutr 2011;66(1):64-9. https://doi.org/10.1007/s11130-010-0205-1
Wojdyło A, Oszmiańskia J, Czemerysb R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 2007;105(3):940-9. https://doi.org/10.1016/j.foodchem.2007.04.038
Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016; 8(9):552. https://doi.org/10.3390/nu8090552
Nagao A, Kotake-Nara E, Hase M. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables. Biosci Biotechnol Biochem 2013;77(5):1055-60. https://doi.org/10.1271/bbb.130025
Parada J, Aguilera JM. Food microstructure affects the bioavailability of several nutrients. J Food Sci 2007;72(2):R21-R32. https://doi.org/10.1111/j.1750-3841.2007.00274.x
Faulks RM, Southon S. Challenges to understanding and measuring carotenoid bioavailability. Biochim Biophys Acta 2005;1740(2):95-100. https://doi.org/10.1016/j.bbadis.2004.11.012
Mourão DM, Sales NS, Coelho SB, Pinheiro-Santana HM. Biodisponibilidade de vitaminas lipossolúveis. Rev Nutr 2005;18(4): 529-39. https://doi.org/10.1590/s1415-52732005000400008
Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 2011;125(2):288-306. https://doi.org/10.1016/j.foodchem.2010.08.012
Chang S-C, Cassidy A, Willett WC, Rimm EB, O’Reilly EJ, Okereke OI. Dietary flavonoid intake and risk of incident depression in midlife and older women. Am J Clin Nutr 2016;104(3):704-14. https://doi.org/10.3945/ajcn.115.124545
Machado NFL, DomÃnguez-Perles R. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 2017;22(2):286. https://doi.org/10.3390/molecules22020286
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2(12):1231-46. https://doi.org/10.3390/nu2121231
Fan F-Y, Sang L-X, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017;22(3):484. https://doi.org/10.3390/molecules22030484
Zhang L, Tai Y, Wang Y et al. The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS. Sci Rep 2017;7:46131. https://doi.org/10.1038/srep46131
Matsubara S, Rodriguez-Amaya DB. Conteúdo de miricetina, quercetina e kaempferol em chás comercializados no Brasil. Food Sci Technol 2006;26(2):380-5. https://doi.org/10.1590/s0101-20612006000200021
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47. https://doi.org/10.1093/ajcn/79.5.727
Hirano T, Abe K, Gotoh M, Oka K. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. Br J Cancer 1995;72(6):1380-8. https://doi.org/10.1038/bjc.1995.518
Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease. Neuroreport 2001;12(17):3871-5. https://doi.org/10.1097/00001756-200112040-00053
Ernawita, Wahyuono RA, Hesse J, Hipler U-C, Elsner P, Böhm V. In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from Aceh, Indonesia. Antioxidants 2017;6(1):11. https://doi.org/10.3390/antiox6010011
Mistry B, Patel RV, Keum Y-S. Access to the substituted benzyl-1,2,3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arabian Journal of Chemistry. 2017;10(2):157-66. https://doi.org/10.1016/j.arabjc.2015.10.004
Sordon S, Popłoński J, Tronina T, Huszcza E. Microbial glycosylation of daidzein, genistein and biochanin a: two new glucosides of biochanin A. Molecules 2017;22(1):81. https://doi.org/10.3390/molecules22010081
Steele EM, Monteiro CA. Association between dietary share of ultra-processed foods and urinary concentrations of phytoestrogens in the US. Nutrients 2017;9(3):209. https://doi.org/10.3390/nu9030209
Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget 2017;8(13):21674-91. https://doi.org/10.18632/oncotarget.15535
Malacrida CR, Motta S. Antocianinas em suco de uva: composição e estabilidade. Boletim do Centro de Pesquisa e Processamento de Alimentos 2006;24(1):59-82. https://doi.org/10.5380/cep.v24i1.5294
Mandal SM, Chakraborty D, Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 2010;5(4):359-68. https://doi.org/10.4161/psb.5.4.10871
Nivelle L, Hubert J, Courot E, Jeandet P, Aziz A, Nuzillard J-M et al. Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules 2017;22(3):474. https://doi.org/10.3390/molecules22030474
Gavrilas LI, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D. The role of bioactive dietary components in modulating miRNA expression in colorectal cancer. Nutrients 2016;8(10):590. https://doi.org/10.3390/nu8100590
Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer chemoprevention by phytochemicals: nature’s healing touch. Molecules 2017;22(3):395. https://doi.org/10.3390/molecules22030395
Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey A, Harper P. Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr 2006;136(12):3046-53. https://doi.org/10.1093/jn/136.12.3046
Velderrain-RodrÃguez GR, Palafox-Carlos H, Wall-Medrano A et al. Phenolic compounds: their journey after intake. Food Funct 2014;5(2):189-97. https://doi.org/10.1039/c3fo60361j
Requena T, Monagas M, Pozo-Bayón MA et al. Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci Technol 2010;21(7):332-44. https://doi.org/10.1016/j.tifs.2010.04.004
Ozdal T, Capanoglu E, Altay F. A review on protein–phenolic interactions and associated changes. Food Res Int 2013;51(2):954-70. https://doi.org/10.1016/j.foodres.2013.02.009
Schneider M, Esposito D, Lilab MA, Foegeding EA. Formation of whey protein–polyphenol meso-structures as a natural means of creating functional particles. Food Funct 2016;7(3):1306-18. https://doi.org/10.1039/c5fo01499a
Mandalari G, Vardakou M, Faulks R, Bisignano C, Martorana M, Smeriglio A, Trombetta D. Food matrix effects of polyphenol bioaccessibility from almond skin during simulated human digestion. Nutrients 2016;8(9):568. https://doi.org/10.3390/nu8090568
Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem 2011;59(14):7925-31. https://doi.org/10.1021/jf201906p
Rawel HM, Kroll J, Hohl UC. Model studies on reactions of plant phenols with whey proteins. Nahrung/Food 2001;45(2):72-81. https://doi.org/10.1002/1521-3803(20010401)45:2<72::aid-food72>3.0.co;2-u
Lamothe S, Azimy N, Bazinet L, Couillard C, Britten M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct 2014;5(10):2621-31. https://doi.org/10.1039/c4fo00203b
Cao Y, Xiong YL. Interaction of whey proteins with phenolic derivatives under neutral and acidic pH conditions. J Food Sci 2017;82(2):409-19. https://doi.org/10.1111/1750-3841.13607
Draijer R, van Dorsten FA, Zebregs YE et al. Impact of proteins on the uptake, distribution, and excretion of phenolics in the human body. Nutrients 2016;8(12):814. https://doi.org/10.3390/nu8120814
Staszewski M, Pilosof AMR, Jagus RJ. Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chem 2011;125:186-92. https://doi.org/10.1016/j.foodchem.2010.08.059
Wang D,Xu Y, Liu W. Tissue distribution and excretion of resveratrol in rat after oral administration of Polygonum cuspidatum extract (PCE). Phytomedicine 2008;15(10):859-66. https://doi.org/10.1016/j.phymed.2008.02.009
Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 2014;5(6):1241-9. https://doi.org/10.1039/c3fo60630a