Biodisponibilidade e classificação de compostos fenólicos

Autores

  • Bernardo Junqueira de Moraes Arnoso UVA
  • Giselle França da Costa UVA
  • Betina Schmidt UVA

DOI:

https://doi.org/10.33233/nb.v18i1.1432

Resumo

Os compostos fenólicos são metabólitos secundários sintetizados abundantemente no reino vegetal e amplamente estudados. Atuam principalmente como agentes de defesa em resposta a estresses causados aos frutos e vegetais, conferindo-os adstringência, coloração, sabor e aroma. O consumo frequente destes compostos por meio de alimentos tem demonstrado benefí­cios na promoção da saúde e no possí­vel auxí­lio no combate a doenças como Diabetes Mellitus tipo 2, obesidade, doenças cardiovasculares, doenças neurodegenerativas e câncer. Possuem propriedades anti-inflamatórias e antioxidantes, além de auxiliarem na modulação da microbiota intestinal. Quimicamente são constituí­dos por anéis aromáticos ligados a hidroxilas, sendo categorizados em flavonóides, ácidos fenólicos, estilbenos, lignanas, entre outros. Para exercerem seus benefí­cios é necessária uma eficiente bioacessibilidade e biodisponibilidade, que são dependentes de diversos fatores associados ao alimento e í  fisiologia humana. Desta forma, este trabalho visa revisar publicações relacionadas aos compostos fenólicos e a relação destes com o organismo humano após ingeridos.

Palavras-chave: compostos fenólicos, bioacessibilidade, biodisponibilidade.

Biografia do Autor

Bernardo Junqueira de Moraes Arnoso, UVA

Nutricionista, Universidade Veiga de Almeida

Giselle França da Costa, UVA

Nutricicionista, Doutora em Ciências Médicas (UERJ), Professora do Curso de Graduação em Nutrição da Universidade Veiga de Almeida (UVA-RJ)

Betina Schmidt, UVA

Nutricionista, Doutora em Ciências Nutricionais (UFRJ),  Professora do Curso de Graduação em Nutrição da Universidade Veiga de Almeida (UVA-RJ)

Referências

Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B. Resources and biological activities of natural polyphenols. Nutrients. 2014;6(12):6020-6047. https://doi.org/10.3390/nu6126020

Bresciani L, Martini D, Mena P et al. Absorption profile of (poly)phenolic compounds after consumption of three food supplements containing 36 different fruits, vegetables, and berries. Nutrients. 2017;9(3):194. https://doi.org/10.3390/nu9030194

Soares SE. Ãcidos fenólicos como antioxidantes. Rev Nutr 2002;15(1):71-81. https://doi.org/10.1590/s1415-52732002000100008

Dai P, Zhu L, Luo F et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. The AAPS Journal 2015;17(3):723-36. https://doi.org/10.1208/s12248-015-9732-x

Lin D, Xiao M, Zhao J et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016; 21(10):1374. https://doi.org/10.3390/molecules21101374

Boudet A-M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007;68:2722-35. https://doi.org/10.1016/j.phytochem.2007.06.012

Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8(2):78. https://doi.org/10.3390/nu8020078

Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18(2):2328-75. https://doi.org/10.3390/molecules18022328

Farah A, Donangelo CM. Phenolic compounds in coffee. Braz J Plant Physiol 2006;18(1):23-36. https://doi.org/10.1590/s1677-04202006000100003

Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 2010;11:705-19. https://doi.org/10.1111/j.1364-3703.2010.00625.x

Klepacka J, Gujska E, Michalak J. Phenolic compounds as cultivar- and variety-distinguishing factors in some plant products Plant Foods Hum Nutr 2011;66(1):64-9. https://doi.org/10.1007/s11130-010-0205-1

Wojdyło A, Oszmiańskia J, Czemerysb R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 2007;105(3):940-9. https://doi.org/10.1016/j.foodchem.2007.04.038

Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016; 8(9):552. https://doi.org/10.3390/nu8090552

Nagao A, Kotake-Nara E, Hase M. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables. Biosci Biotechnol Biochem 2013;77(5):1055-60. https://doi.org/10.1271/bbb.130025

Parada J, Aguilera JM. Food microstructure affects the bioavailability of several nutrients. J Food Sci 2007;72(2):R21-R32. https://doi.org/10.1111/j.1750-3841.2007.00274.x

Faulks RM, Southon S. Challenges to understanding and measuring carotenoid bioavailability. Biochim Biophys Acta 2005;1740(2):95-100. https://doi.org/10.1016/j.bbadis.2004.11.012

Mourão DM, Sales NS, Coelho SB, Pinheiro-Santana HM. Biodisponibilidade de vitaminas lipossolúveis. Rev Nutr 2005;18(4): 529-39. https://doi.org/10.1590/s1415-52732005000400008

Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 2011;125(2):288-306. https://doi.org/10.1016/j.foodchem.2010.08.012

Chang S-C, Cassidy A, Willett WC, Rimm EB, O’Reilly EJ, Okereke OI. Dietary flavonoid intake and risk of incident depression in midlife and older women. Am J Clin Nutr 2016;104(3):704-14. https://doi.org/10.3945/ajcn.115.124545

Machado NFL, Domínguez-Perles R. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 2017;22(2):286. https://doi.org/10.3390/molecules22020286

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2(12):1231-46. https://doi.org/10.3390/nu2121231

Fan F-Y, Sang L-X, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017;22(3):484. https://doi.org/10.3390/molecules22030484

Zhang L, Tai Y, Wang Y et al. The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS. Sci Rep 2017;7:46131. https://doi.org/10.1038/srep46131

Matsubara S, Rodriguez-Amaya DB. Conteúdo de miricetina, quercetina e kaempferol em chás comercializados no Brasil. Food Sci Technol 2006;26(2):380-5. https://doi.org/10.1590/s0101-20612006000200021

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47. https://doi.org/10.1093/ajcn/79.5.727

Hirano T, Abe K, Gotoh M, Oka K. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. Br J Cancer 1995;72(6):1380-8. https://doi.org/10.1038/bjc.1995.518

Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease. Neuroreport 2001;12(17):3871-5. https://doi.org/10.1097/00001756-200112040-00053

Ernawita, Wahyuono RA, Hesse J, Hipler U-C, Elsner P, Böhm V. In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from Aceh, Indonesia. Antioxidants 2017;6(1):11. https://doi.org/10.3390/antiox6010011

Mistry B, Patel RV, Keum Y-S. Access to the substituted benzyl-1,2,3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arabian Journal of Chemistry. 2017;10(2):157-66. https://doi.org/10.1016/j.arabjc.2015.10.004

Sordon S, Popłoński J, Tronina T, Huszcza E. Microbial glycosylation of daidzein, genistein and biochanin a: two new glucosides of biochanin A. Molecules 2017;22(1):81. https://doi.org/10.3390/molecules22010081

Steele EM, Monteiro CA. Association between dietary share of ultra-processed foods and urinary concentrations of phytoestrogens in the US. Nutrients 2017;9(3):209. https://doi.org/10.3390/nu9030209

Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget 2017;8(13):21674-91. https://doi.org/10.18632/oncotarget.15535

Malacrida CR, Motta S. Antocianinas em suco de uva: composição e estabilidade. Boletim do Centro de Pesquisa e Processamento de Alimentos 2006;24(1):59-82. https://doi.org/10.5380/cep.v24i1.5294

Mandal SM, Chakraborty D, Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 2010;5(4):359-68. https://doi.org/10.4161/psb.5.4.10871

Nivelle L, Hubert J, Courot E, Jeandet P, Aziz A, Nuzillard J-M et al. Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules 2017;22(3):474. https://doi.org/10.3390/molecules22030474

Gavrilas LI, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D. The role of bioactive dietary components in modulating miRNA expression in colorectal cancer. Nutrients 2016;8(10):590. https://doi.org/10.3390/nu8100590

Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer chemoprevention by phytochemicals: nature’s healing touch. Molecules 2017;22(3):395. https://doi.org/10.3390/molecules22030395

Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey A, Harper P. Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr 2006;136(12):3046-53. https://doi.org/10.1093/jn/136.12.3046

Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A et al. Phenolic compounds: their journey after intake. Food Funct 2014;5(2):189-97. https://doi.org/10.1039/c3fo60361j

Requena T, Monagas M, Pozo-Bayón MA et al. Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci Technol 2010;21(7):332-44. https://doi.org/10.1016/j.tifs.2010.04.004

Ozdal T, Capanoglu E, Altay F. A review on protein–phenolic interactions and associated changes. Food Res Int 2013;51(2):954-70. https://doi.org/10.1016/j.foodres.2013.02.009

Schneider M, Esposito D, Lilab MA, Foegeding EA. Formation of whey protein–polyphenol meso-structures as a natural means of creating functional particles. Food Funct 2016;7(3):1306-18. https://doi.org/10.1039/c5fo01499a

Mandalari G, Vardakou M, Faulks R, Bisignano C, Martorana M, Smeriglio A, Trombetta D. Food matrix effects of polyphenol bioaccessibility from almond skin during simulated human digestion. Nutrients 2016;8(9):568. https://doi.org/10.3390/nu8090568

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem 2011;59(14):7925-31. https://doi.org/10.1021/jf201906p

Rawel HM, Kroll J, Hohl UC. Model studies on reactions of plant phenols with whey proteins. Nahrung/Food 2001;45(2):72-81. https://doi.org/10.1002/1521-3803(20010401)45:2<72::aid-food72>3.0.co;2-u

Lamothe S, Azimy N, Bazinet L, Couillard C, Britten M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct 2014;5(10):2621-31. https://doi.org/10.1039/c4fo00203b

Cao Y, Xiong YL. Interaction of whey proteins with phenolic derivatives under neutral and acidic pH conditions. J Food Sci 2017;82(2):409-19. https://doi.org/10.1111/1750-3841.13607

Draijer R, van Dorsten FA, Zebregs YE et al. Impact of proteins on the uptake, distribution, and excretion of phenolics in the human body. Nutrients 2016;8(12):814. https://doi.org/10.3390/nu8120814

Staszewski M, Pilosof AMR, Jagus RJ. Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chem 2011;125:186-92. https://doi.org/10.1016/j.foodchem.2010.08.059

Wang D,Xu Y, Liu W. Tissue distribution and excretion of resveratrol in rat after oral administration of Polygonum cuspidatum extract (PCE). Phytomedicine 2008;15(10):859-66. https://doi.org/10.1016/j.phymed.2008.02.009

Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 2014;5(6):1241-9. https://doi.org/10.1039/c3fo60630a

Downloads

Publicado

2019-08-04