Mecanismos moleculares antioxidantes modulados pelo exercício físico
DOI:
https://doi.org/10.33233/rbfe.v11i2.3393Resumo
A geração de espécies reativas de oxigênio (EROs) é um fenômeno biológico que ocorre durante a vida celular. Estes compostos podem ativar vias de sinalização envolvidas na regulação do crescimento, proliferação, diferenciação e apoptose. A presença contínua de pequenos estímulos induzidos pelo exercício provoca elevações mínimas nas concentrações de espécies reativas de oxigênio, as quais são hábeis para induzir a expressão de enzimas antioxidantes e outros mecanismos de defesa. O NFκB e MAPK são duas grandes vias de sinalização que podem ser ativadas em resposta às EROs induzidas pelo exercício, tanto agudo quanto crônico (treinamento). Embora o papel destes compostos sobre a ativação de enzimas antioxidantes venha sendo investigado, os mecanismos intrínsecos da adaptação antioxidante permanecem obscuros.
Palavras-chave: treinamento físico, transdução de sinal, defesa antioxidante.
Referências
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011;194:7-15.
Ji LL, Cabrera G, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Annals of the New York Academy of Sciences 2006;1067:425-35.
Tromm CB, Bom K, Silva DM, Wingist G, Rosa GL, Pinho RA, et al. Suplementação com taurina reduz estresse oxidativo em soro após exercÃcio excêntrico. Brazilian Journal of Biomotricity 2011;5:34-44.
Cabrera CG, Domenech E, Vina J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic Biol Med 2008;44:126-131.
Zoppi CC. Mecanismos moleculares sinalizadores da adaptação ao treinamento fÃsico. Rev Saúde Com 2005;1:60-70.
Frederico M, Luz G, Justo SL, Silva S, Medeiros C, Barbosa VA et al. Exercise training provides cardioprotection via a reduction in reactive oxygen species in rats submitted to myocardial infarction induced by isoproterenol. Free Radic Res 2009;11:1-8.
Silva LA, Rosani MM, Souza PS, Severino JB, Fraga D, Streck EL et al. Comparação do treinamento fÃsico de quatro e oito semanas sobre a atividade da cadeia transportadora de elétrons e marcadores de estresse oxidativo em fÃgado de camundongos. Rev Bras Med Esporte 2010;16:126-9.
Coelho BLP, Rocha LGC, Scarabelot KS, Scheffer D, Rosani MM, Silveira PCL, et al. Physical exercise prevents the exacerbation of oxidative stress parameters in chronic kidney disease. J Ren Nutr 2010;47:169-19.
Silva LA, Pinho CA, Scarabelot KS, Fraga DB, Volpato AM, Boeck CR. Physical exercise increases mitochondrial function and reduces oxidative damage in skeletal muscle. Eur J Appl Physiol 2009;105:861-7.
Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Méd 2000;29:222-30.
Salo DC, Donovan CM, Davies KJA. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 1991;11:239-46.
Vina J, Gomez-Cabrera MC, Lloret A, Marquez R, Minana JB, Pallardo FV, Sastre J. Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life 2000;50:271-77.
McArdle A, van der Meulen JH, Catapano M, Symons MC, Faulkner JA, Jackson MJ. Free radical activity following contraction-induced injury to the extensor digitorum longus muscles of rats. Free Radic Biol Med 1999;26:1085-91.
Powers SK, DeRuisseau KC, Quindry J, Hamilton KL. Dietary antioxidants and exercise. J Sports Sci 2004;22:81-94.
Leeuwenburgh C, Heinecke JW. Oxidative stress Antioxidant in exercise. Curr Med Chem 2001;8:829-38.
Ascensão A, Magalhães J, Soares J, Oliveira J, Duarte J. ExercÃcio e stress oxidativo cardÃaco. Revista Portuguesa de Cardiologia 2003;22:651-78.
Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging, and exercise. Med Sci Sports Exerc 1993;25:210-2.
Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, et al. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol 1995;79:129-35.
Gunduz F, Senturk UK, Kuru O, Aktekin B, Aktekin MR. The effect of one year’s swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol Res 2004;53:171-6.
Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, et al. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 1994;266:R375-R380.
Cakir-Atabek H, Demir S, PinarbaŞili RD, Gündüz NJ. Effects of different resistance training intensity on indices of oxidative stress. Strength Cond Res 2010;24:2491-7.
Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantadosi CA. Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 2003;278:41510-18.
Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol 2009;296:C116-C123.
Irrcher I, Ljubicic V, Kirwan AF, Hood DA. AMP activated protein kinase-regulated activation of the PGC-1α promoter in skeletal muscle cells. PLoS One 2008;3:e3614.
Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 2000;88:2219-26.
Beelman CA, Parker R. Degradation of mRNA in eukaryotes. Cell 1995;81:179-83.
Cooper GM, Hausman RE. A célula – uma abordagem molecular. Porto Alegre: Artmed; 2007.
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807-69.
Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol 2007;103:388-95.
Kefaloyianni E, Gaitanaki C, Beis I. ERK1/2 and p38-MAPK signaling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 2006;18:2238-51.
Goodyear LJ, Chang PY, Sherwood DJ, Dufresne SD, Moller DE. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol Endocrinol Metab 1996;271:403-8.
Widegren U, Wretman C, Lionikas A, Hedin G, Henriksson J. Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflugers Arch 2000;441:317-22.
Yu M, Blomstrand E, Chibalin AV, Krook A, Zierath JR. Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle. J Physiol 2001;536:273-82.
Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 2005;99:950-6.
Fujii N, Boppart MD, Dufresne SD, Crowley PF, Jozsi AC, Sakamoto K et al. Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity. Am J Physiol Cell Physiol 2004;287:200-8.
Martineau LC, Gardiner PF. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 2001;91: 693-702.
Lira VA, Benton CR, Yan Z, Bonen A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 2010;299:E145-61.
Kamata H, Manabe T, Oka S, Kamata K, Hirata H. Hydrogen peroxide activates IkB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 2002;519:231-7.
Chen BC, Lin WW. PKC- and ERK-dependent activation of I kappa B kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br J Pharmacol 2001;134:1055-65.
Ho RC, Hirshman MF, Li Y, Cai D, Farmer JR, Aschenbach WG, et al. Regulation of IkB kinase and NFkappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 2005;289:C794-C801.
Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J. Acute exercise activates nuclear factor NFkkappaB signaling pathway in rat skeletal muscle. FASEB J 2004;18:1499-506.
Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med 2000;28:463-99.
Hollander J, Fiebig R, Ookawara T, Ohno H, Ji LL. Superoxide dismutate gene expression is activated by a single bout of exercise. Pflug Arch (Eur J Physiol) 2001;442:426-34.
Ji LL, Fu RG, Mitchell EW. Glutathione and antioxidant enzymes in skeletal muscle: Effects of fiber type and exercise intensity. J Appl Physiol 1992;73:1854-9.
Davies KJ, Quantanilla AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982;107:1198-205.
Bejma J, Ji LL. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 1999;87:465-70.
Higuchi M, Cartier LJ, Chen M, Holluszy JO. Superoxide dismutase and catalase in skeletal muscle: Adaptive response to exercise. J Gerontol 1985;40:281-86.
Ji LL, Stratman FW, Lardy HA. Antioxidant enzyme systems in rat liver, and skeletal muscle: influences of selenium deficiency, chronic training and acute exercise. Arch Biochem Biophys 1988;263:150-60.
Leewenburgh C, Fiebig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: Responses of glutathione and antioxidant enzyme systems. Am J Physiol 1994;267:R439-R445.
Powers SK, Criswell D, Lawler J, Martin D, Lieu FK, Ji LL, Herb RA. Rigorous exercise training increases superoxide dismutase activity in the ventricular myocardium. Am J Physiol 1993;265:2094-8.
Oh-ishi S, Kizaki T, Nagasawa J, Izawa T, Komabayashi T, Nagata N et al. Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle. Clin Exp Pharmacol Physio 1997;24:326-32.
Gore M, Fiebig R, Hollander J, Griffiths M, Leeuwenburgh C, Ohno H, Ji LL. Exercise training alters antioxidant enzyme gene expression in rat skeletal muscle. Can J Physiol Pharmacol 1998;76:1139-45.
Tiidus PM, Houston ME. Vitamin E status does not affect the response to exercise training and acute exercise in female rats. J Nutr 1993;123:834-40.
Ji LL. Exercise at old age: Does it increase or alleviate oxidative stress? Ann N Y Acad Sci 2001;923:236-47.
Aronson D, Violan, MA, Dufresne SD, Zangen D, Fielding R, Goodyear LJ. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J Clin Invest 1997;99:1251-7.
Ryder J, Fahlman R, Wallberg-Henriksson H, Alessi D, Krook A, Zierath J. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. J Biol Chem 2000;275:1457-62.
van Ginneken MM, Graaf-Roelfsema E, Keizer HA, van Dam KG, Wijnberg ID, van der Kolk JH, et al. Effect of exercise on activation of the p38 mitogen-activated protein kinase pathway, c-Jun NH2 terminal kinase, and heat shock protein 27 in equine skeletal muscle. Am J Vet Res 2006;67:837-44.
Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 2008;44:142-52.
Durham WJ, Li YP, Gerken E, Farid M, Arbogast S, Wolfe RR, Reid MB. Fatiguing exercise reduces DNA binding activity of NFkappaB in skeletal muscle nuclei. J Appl Physiol 2004;97:1740-05.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2012 Camila Baumer Tromm
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).