Adaptações agudas promovidas por exercícios no aumento da expressão gênica, conteúdo e translocação da proteína GLUT-4 no músculo esquelético e melhora na responsividade í insulina
DOI:
https://doi.org/10.33233/rbfe.v10i2.3431Palavras-chave:
exercícios físicos; GLUT-4; diabetes; insulinaResumo
Diversos estudos indicam que os exercícios físicos em geral promovem melhorias fisiológicas tanto em indivíduos saudáveis quanto em portadores de patologias. Dentre estas melhorias, cita-se o aumento da expressão do GLUT-4, promovendo aumento da tolerância í glicose em indivíduos que apresentam resistência í insulina, como diabetes, particularmente de tipo 2. Nesta revisão, será apresentada uma descrição de vários estudos sobre o tema, destacando os efeitos agudos promovidos por treinamentos aeróbios e anaeróbios, particularmente relacionados ao aumento da sensibilidade í insulina. Foi realizada uma vasta revisão bibliográfica de artigos internacionais indexados ao Pubmed, entre os meses de janeiro e julho de 2010.
Palavras-chave: exercícios físicos, GLUT-4, diabetes, insulina.
Referências
Saltiel AR, Kahn, CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001;414(6865):799-806.
Dallman MF, Akana SF, Bhatnagar S, Bell ME, Choi S, Chu A et al. Starvation: early signals, sensors, and sequelae. Endocrinology 1999;140:4015-23.
DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981;30:1000-7.
Kubo K, Foley JE. Rate-limiting steps for insulin-mediated glucose uptake into perfused rat hindlimb. Am J Physiol 1986;250(13):100-2.
Rodnick KJ, Slot JW, Studelska DR, Hanpeter DE, Robinson LJ, Geuze HJ, James DE. Immunocytochemical and biochemical studies of GLUT 4 in rat skeletal muscle. J Biol Chem 1992;267:6278-85.
Richter EA, Derave W, Wojtaszewski JF. Glucose, exercise and insulin: emerging concepts. J Physiol 2001;535:313-22.
Richter EA, Kiens B, Mizuno M, Strange S. Insulin action in human thighs after one-legged immobilization. J Appl Physiol 1989;67:19-23.
Tabata I, Suzuki Y, Fukunaga T, Yokozeki T, Akima H, Funato K. Resistance training affects GLUT-4 content in skeletal muscle of humans after 19 days of head-down bed rest. J Appl Physiol 1999;86:909-14.
Houmard JA, Hickey MS, Tyndall GL, Gavigan KE, Dohm GL. Seven days of exercise increase GLUT-4 protein content in human skeletal muscle. J Appl Physiol 1995;79:1936-38.
Kawanaka K, Tabata I, Katsuta S, Higuchi M. Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training". J Appl Physiol 1997;83:2043-47.
Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE, Holloszy JO, Mueckler M. Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the GLUT-4 glucose transporter. J Biol Chem 1995;270:1679-84.
Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 2005;99:330-7.
Shepherd PR, Kahn BB. Glucose transporters and insulin action. Implications for insulin resistance and diabetes mellitus. N Engl J Med 1999;341:248-57.
Henriksen EJ. Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol 2002;93(2):788-96.
Ribon V, Saltiel AR. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem J 1997;324:839-45.
Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001;410:944-8.
Nesher R, Karl IE, Kipnis DM. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol Cell Physiol 1985;249:226-32.
Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, and Winder WW. 5 AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999;48:1667-71.
Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP,Witters LA. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 1999;24:22-5.
Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 2005;99(1)330-37.
Holloszy JO, Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol 1996;128:99-193.
Jorgensen SB, Rose AJ. How is AMPK activity regulated in skeletal muscles during exercise? Front Biosc 2008;13:5589-604.
Woods SC, Chavez M, Park CR, Riedy C, Kaiyala K, Richardson RD et al. The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neurosci Biobehav Rev 1996;20:139-44.
Wasserman DH. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu Rev Physiol 1995;57:191-218.
Woods SC, Porte JD. Neural control of the endocrine pancreas. Physiol Rev 1974;54:596-619.
Luyckx AS, Lefebvre PJ. Mechanisms involved in the exercise-induced increase in glucagons secretion in rats. Diabetes 1974;23:81-93.
Miller RE. Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the islets of Langerhans. Endocr Rev 1981;2:471-94.
Ivy JL. The insulin-like effect of muscle contraction. Exercise Sport Sci Rev 1987;15:29-51.
Garetto LP, Richter EA, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol 1984;246:471-75.
Holloszy JO, Constable SH, Young DA. Activation of glucose transport in muscle by exercise. Diabetes Metab Rev 1986;1:409-24.
Ihlemann J, Ploug T, Hellsten Y, Galbo H. Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol Endocrinol Metab 2000;279:862-67.
Goodyear LJ, Kahn BB. Exercise, glucose transport and insulin sensitivity. Annu Rev Med 1998;49:235-61.
Annuzzi G, Riccardi G, Capaldo B, Kaijser L. Increased insulin-stimulated glucose uptake by exercised human muscles one day after prolonged physical exercise. Eur J Clin Invest 1991;21:6-12.
Etgen GJJr, Brozinick JTJr, Kang HY, Ivy JL. Effects of exercise training on skeletal muscle glucose uptake and transport. Am J Physiol 1993;264:723-33.
Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT-4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 1994;269:14396-401.
Kawanaka K, Tabata I, Katsuta SE, Higuchi M. Changes in insulin-stimulated glucose and GLUT-4 protein in rat skeletal muscle after training. J Appl Physiol 1997;83(6):2043-47.
Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 1999;87(5)1990-5.
Neufer PD, Dohm GL. Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle. Am J Physiol Cell Physiol 1993;265:1597-1603.
Zheng D, MacLean PS, Pohnert SC, Knigh JB, Olson AL, Winder WW, Dohm GL. Regulation of muscle GLUT-4 transcription by AMPK-activated protein kinase. J Appl Physiol 2001;90:1073-10.
Terada S, Yokozeki T, Kawanaka K, Ogawa K, Higuchi M, Ezaki O, Tabata I. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol 2001;90(6):2019-24.
Hutber CA, Hardie DG, Winder WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol Endocrinol Metab 1997;272:262-66.
Rasmussen BB, Hancock CR, Winder WW. Post exercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase. J Appl Physiol 1998;85:1629-34.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2011 Henrique Quintas Teixeira Ribeiro, Rodolfo Gonzalez Camargo, Waldecir Paula Lima, Ricardo Zanuto, Luiz Carlos Carnevali Junior
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).