Comparação do VO2 acumulado durante o exercí­cio contí­nuo e intermitente na máxima fase estável de lactato sanguí­neo

Autores

  • Benedito Sérgio Denadai UNESP

DOI:

https://doi.org/10.33233/rbfe.v9i1.3466

Resumo

O objetivo deste estudo foi comparar o VO2 acumulado durante o exercí­cio realizado na máxima fase estável de lactato sanguí­neo contí­nua (MLSSc) e intermitente (MLSSi). Sete ciclistas treinados (idade = 25,5 ± 5,1 anos, VO2max = 57,7 ± 4,6 ml.kg-1.min-1) foram submetidos aos seguintes protocolos em um cicloergômetro: 1) Teste incremental para a determinação do VO2max e sua respectiva carga (Pmax); 2) 2 a 3 testes de carga constante para a determinação da MLSSc e; 3) 2 a 3 testes intermitentes (7 x 4 min e 1 x 2 min, com 2 min de recuperação a 50%Pmax) para a determinação da MLSSi. Foram determinados na MLSSc e MLSSi o tempo (TMcg) e o VO2 mantidos na carga (VO2ACcg) e o consumo acumulado de oxigênio (VO2AC) durante o exercí­cio. O TMcg (27,1 ± 1,2 e 10,1 ± 3,4 min) e o VO2ACcg (96,7 ± 1,1 e 35,1 ± 10,7 l) foram estatisticamente maiores no exercí­cio contí­nuo do que no intermitente, respectivamente. O VO2AC (104,4 ± 9,4 e 102,2 ± 8,9 l) foi similar nas condições contí­nua e intermitente. Pode-se concluir que a possí­vel superioridade do treinamento intervalado realizado nas condições deste estudo, não parece ser determinada pela interação entre o tempo de exercí­cio e o VO2 acumulado (i.e., VO2AC) na MLSS.

Palavras-chave: treino aeróbio, ciclismo, capacidade aeróbia, adaptação aeróbia.

Biografia do Autor

Benedito Sérgio Denadai, UNESP

Professor Titular, Laboratório de Avaliação da Performance Humana, UNESP – Rio Claro

Referências

Beneke R. Methodological aspects of maximal lactate steady state implications for performance testing. Eur J Appl Physiol 2003a;89:95-9.

Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta analysis. Med Sci Sports Exerc 1997;29:837-43.

Billat V, Sirvent P, Lepretre PM, Koralsztein JP. Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance-runners. Pflugers Arch 2004;447:875-83.

Philp A, Macdonald AL, Carter H, Watt PW, Pringle JS. Maximal lactate steady state as a training stimulus. Int J Sports Med 2008;29:475-9.

Billat V. Interval training for performance: a scientific and empirical practice special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med 2001;31:13-31.

Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training. Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 2002;32:53-73.

Beneke R, Hutler M, Von Duvillard SP, Sellens M, Leithauser RM. Effect of test interruptions on blood lactate during constant workload testing. Med Sci Sports Exerc 2003;35:1626-30.

Yoshida T, Watari H, Tagawa K. Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy. NMR Biomed 1996;9:13-9.

Spencer M, Bishop D, Dawson B, Goodman C, Duffield R. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc 2006 ;38:1492-9.

Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000;81:188-96.

Billat V, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 2003;33:407-26.

McManus AM, Cheng CH, Leung MP, Yung TC, Macfarlane DJ. Improving aerobic power in primary school boys: a comparison of continuous and interval training. Int J Sports Med 2005;26:781-6.

Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max, more than moderate training. Med Sci Sports Exerc 2007;39:665-71.

Denadai BS, Figueira TR, Favaro OR, Gonçalves M. Effect of the aerobic capacity on the validity of the anaerobic threshold for determination of the maximal lactate steady state in cycling. Braz J Med Biol Res 2004;37:1551-6.

Beneke R. Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol 2003b;8:361-9.

Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc 2005;37:1601-7.

Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 1986;3:346-56.

Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, et al. Different effect of interval versus continuous training on mitochondrial function in sedentary subjects: relation to aerobic performance improvements. Am J Physiol Regul Integr Comp Physiol 2008;295:R264–R72.

Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 2000;29:373-86.

Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 1982;2:1-12.

Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J Appl Physiol 1996;80:2250-4.

Downloads

Publicado

2010-03-10

Edição

Seção

Artigos originais