Possí­veis mecanismos neurofisiológicos mediadores da educação cruzada

Autores

  • Daniel Teixeira Belloni UCB
  • Vernon Furtado da Silva UCB

DOI:

https://doi.org/10.33233/rbfe.v9i1.3467

Resumo

Estudos prévios têm revelado que o treinamento de somente um membro pode causar melhora dos ní­veis de performance do membro contralateral não treinado. A literatura denomina este fenômeno como educação cruzada. De acordo com as evidências, a educação cruzada parece ser mediada por mecanismos neurofisiológicos. Contudo, não se conhece ainda quais são os verdadeiros mecanismos mediadores deste fenômeno. Portanto, baseado nesta premissa, o presente estudo teve o objetivo de realizar uma extensa revisão de literatura sobre os possí­veis mecanismos neurofisiológicos mediadoras da educação cruzada. Diante das evidências podemos verificar que, embora este fenômeno tenha sido constatado a mais de um século, os estudos não foram capazes de descrever quais são os verdadeiros mecanismos neurofisiológicos mediadores da educação cruzada até a presente data. Os estudos sobre o fenômeno da educação cruzada abrem o caminho para a compreensão e entendimento dos mecanismos neurais do controle do movimento em vários ní­veis do sistema nervoso. Pequenas alterações em varias estruturas do sistema nervoso podem contribuir para a produção máxima dos aumentos de força no membro contralateral não treinado. Ainda, presumimos que o surgimento de novos procedimentos fisiológicos marcará a possibilidade de constatações sobre outros mecanismos em futuros estudos.

Palavras-chave: educação cruzada, mecanismos neurofisiológicos, controle do movimento.

Biografia do Autor

Daniel Teixeira Belloni, UCB

Programa de Pós-Graduação Stricto Sensu em Ciência da Motricidade Humana/PROCIMH/UCB-RJ

Vernon Furtado da Silva, UCB

Professor Titular do Programa de Pós-Graduação Stricto Sensu em Ciência da Motricidade Humana da UCB-RJ

Referências

Scripture EW, Smith TL, Brown EM. On the education of muscular control and power. Studies Yale Psychol Lab 1894;2:114-9.

Farthing JP, Krentz JR, Magnus CR. Strength training the free limb attenuates strength loss during unilateral immobilization. J Appl Physiol 2009;106(3):830-6.

Farthing JP, Borowsky R, Chilibeck PD, Binsted G, Sarty GE. Neuro-physiological adaptations associated with cross-education of strength. Brain Topogr 2007;20(2):77-88.

Hortobágyi T. Cross education and the human central nervous system. IEEE Eng Med Biol Mag 2005;24(1):22-8.

Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 2006;36(2):133-49.

Farthing JP, Chilibeck PD. The effects of eccentric training at different velocities on cross-education. Eur J Appl Physiol 2003;89:570-577.

Toca-Herrera JL, Gallach JE, Gómis M, González LM. Cross-education after one session of unilateral surface electrical stimulation of the rectus femoris. J Strength Cond Res 2008;22(2):614-8.

Kumar S, Mandal MK. Bilateral transfer of skill in left- and right-handers. Laterality 2005;10(4):337-44.

Teixeira LA. Timing and force components in bilateral transfer of learning. Brain Cogn 2000;44:455-69.

Perez MA, Tanaka S, Wise SP, Willingham DT, Cohen LG. Time-specific contribution of the supplementary motor area to intermanual transfer of procedural knowledge. J Neurosci 2008;28(39):9664-9.

Anguera JA, Russell CA, Noll DC, Seidler RD. Neural correlates associated with intermanual transfer of sensorimotor adaptation. Brain Res 2007;1185:136-51.

Teixeira LA, Caminha LQ. Intermanual transfer of force control is modulated by asymmetry of muscular strength. Exp Brain Res 2003;149:312-9.

Lee M, Carroll TJ. Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med 2007;37(1):1-14.

Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 2006;101:1514-22.

Zhou S. Chronic neural adaptations to unilateral exercise: mechanisms of cross-education. Exerc Sport Sci Rev 2000;28(4):177-84.

Lagerquist O, Zehr EP, Docherty D. Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. J Appl Physiol 2006;100(1):83-90.

Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol 2004;96:1861-6.

Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 2003;90: 2451-9.

Hortobágyi T, Lambert NJ, Hill JP. Greater cross-education following training with muscle lengthening than shortening. Med Sci Sports Exerc 1997;29:107-12.

Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 2003;89:578-86.

Moritani T, DeVries HA. Neural factors verses hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979;58(3):115-30.

Machado S, Portella CE, Silva JG, Velasques B, Bastos VH, Cunha M, et al. Learning and implicit memory: mechanisms and neuroplasticity. Rev Neurol 2008;46(9):543-9.

Bear MF, Connors BW, Paradiso MA. Neurociência: desvendando o sistema nervoso. 2 ª ed. Porto Alegre: Artmed; 2006. p. 731.

Kalaska JF. From intention to action: motor cortex and the control of reaching movements. Adv Exp Med Biol 2009;629:139-78.

Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, et al. Early consolidation in human primary motor cortex. Nature 2002;415:640-44.

Aagaard P, Simonsen EB, Anderson JL, Magnusson SP, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 2002;92:2309-18.

Aagaard P, Simonsen EB, Anderson JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 2000;89:2249-57.

Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992;73:911-7.

Yelnik J. Une modélisation de l’organisation des ganglions de la base. Rev Neurol (Paris) 2008;164(12):969-76.

Ito M. Mechanisms of motor learning in the cerebellum. Brain Res 2000;886:237-45.

López-Juárez A. Receptores y transportadores en la glía de Bergmann: posibles funciones en la fisiología del cerebelo. Rev Neurol 2008;47(10):527-35.

Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 2009;199(1):61-75.

Cole S, McNally GP. Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning. Learn Mem 2008;16(1):1-7.

Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, et al. Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 2000;10:1093-104.

Gorgey AS, Dudley GA. The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. J Orthop Sports Phys Ther 2008;38(8):508-16.

Tin C, Poon CS. Internal models in sensorimotor integration: perspectives from adaptive control theory. J Neural Eng 2005;2(3):S147-63.

Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992;73: 911-7.

Enoka RM. Bases neuromecânicas da cinesiologia. 2a ed. São Paulo: Manole; 2000.

Hortobágyi T, Scott K, Lambert J, Hamilton G, Tracy J. Cross-education of muscle strength is greater with stimulated than voluntary contractions. Motor Control 1999;3:205-19.

Hellebrandt FA, Parrish AM, Houtz SJ. Cross education: the effect of unilateral exercise on the contralateral limb. Arch Phys Med 1947;28:76-85.

Hellebrandt FA. Cross education: ipsilateral and contralateral effects of unimanual training. J Appl Physiol 1951;4:136-44.

Ghez C, Gordon J. An introduction to movement. In Kandel ER, Schwartz JH, Jessell TM. Essentials of neural science and behavior. New York: McGraw-Hill; 1995. p. 489-500.

Kumru H, Valls-Solé J. Excitability of the pathways mediating the startle reaction before execution of a voluntary movement. Exp Brain Res 2006;169(3):427-32.

Downloads

Publicado

2010-03-10