Bases metabólicas da rabdomiólise e atrofia muscular

Autores

  • Rodrigo Minoru Manda UNESP
  • Roberto Carlos Burini UNESP

DOI:

https://doi.org/10.33233/rbfe.v9i2.3481

Resumo

A redução da musculatura esquelética ou atrofia muscular ocorre gradativamente a partir dos 30 anos de idade, mas com significância importante a partir da 5ª década. Entretanto, ocorre em qualquer idade, na privação alimentar de carboidratos e no trauma. Pode ocorrer por denervação, desuso, deficiência nutricional, desequilí­brio hormonal e inflamação. A proteólise muscular ocorre predominantemente via ATP-ubiquitina-proteossoma e cooperativamente com os sistemas calpaí­na e caspase 3. Como promotores da proteólise figuram os glicocorticóides, o FOXO3 e as citocinas pró-inflamatórias. O TNFα, ativa o NF-κB tanto pelo Ca++ intracelular como pelas espécies reativas do oxigênio. Figuram como marcadores moleculares da atrofia muscular, a expressão aumentada dos genes MAFbx/atrogina 1 e MURF-1 e os marcadores proteolí­ticos como ubiquitina, calpaí­na, miostatina, TNFα e NF-κB. No geral, a rabdomiólise tem o estresse oxidativo como principal efetor e a disfunção mitocondrial, apoptose celular, como desfecho.

Palavras-chave: rabdomiólise, proteólise, atrofia muscular, caquexia.

Biografia do Autor

Rodrigo Minoru Manda, UNESP

Biomédico, Centro de metabolismo em exercí­cio e nutrição (CeMENutri), Departamento de Saúde Pública, Faculdade de Medicina de Botucatu (UNESP), Programa Laboratório em Metabolismo Nutricional e Desportivo, Faculdade de Medicina de Botucatu (UNESP)

Roberto Carlos Burini, UNESP

Professor Titular do Departamento de Saúde Pública da Faculdade de Medicina de Botucatu (UNESP) e responsável pelo CeMENutri, Departamento de Saúde Pública, Faculdade de Medicina de Botucatu (UNESP), Departamento de Patologia, Faculdade de Medicina de Botucatu (UNESP)

Referências

Tracey KJ, Cerami A. Tumor necrosis factor in the malnutrition (cachexia) of infection and cancer. Am J Trop Med Hyg 1992;47:2-7.

Pereira SEM, Buksman S, Perracini M, Py L, Barreto KML, Leite VMM. Queda em idosos. Sociedade Brasileira de Geriatria e Gerontologia; 2001. [citado 2010 mai 13]. Disponível em URL: http://www.projetodiretrizes.org.br/projeto_diretrizes/082.pdf

Roubenoff R. Sarcopenia: a major modifiable cause of frailty in the elderly. J Nutr Health Aging 2000;4:140-2.

Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005;35:473-83.

Combaret L, Dardevet D, Bechet D, Taillandier D, Mosoni L, Attaix D. Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 2009;12:37-41.

Wismann JA, Willoughby DS. Effects of protein/amino acid supplementation and gastrocnemius immobilization on muscle mass, strength, and gene expression. Med Sci Sports Exerc 2008;40(5):S474.

Sacheck JM, Hyatt JP, Raffaello A, Roy RR, Edgerton VR, Lecker SH et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. Faseb J 2007;21:140-155.

French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. Faseb J 2008;22:2862-71.

Barbieri M, Ferrucci L, Ragno E, Corsi A, Bandinelli S, Bonafè M et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab 2003;284:E481-7.

Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 2004;7:405-10.

Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 2006;83:735-43.

Costelli P, Carbo N, Tessitore L, Bagby GJ, Lopez-Soriano FJ, Argilés JM, et al. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest 1993;92:2783-9.

Wing SS, Goldberg AL. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol 1993;264:E668-76.

Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ, Zhuang H, Dawson-Hughes B et al. Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 1994;93:2379-86.

Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 2005;37:2098-114.

Kandarian SC, Stevenson EJ. Molecular events in skeletal muscle during disuse atrophy. Exerc Sport Sci Rev 2002;30:111-6.

Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 2007;120:782-91.

Bodine SC, Latres E, Baumhueter S, Lai UK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294:1704-8.

Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001;98:14440-5.

Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 1996;335:1897-905.

Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC. Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 2003;551:33-48.

Sandri M, Sandri C, Gilbert A, Shurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117:399-412.

Costelli P, Reffo P, Penna F, Autelli R, Bonelli G, Baccino FM. Ca(2+)-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol 2005;37:2134-46.

Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003;83:731-801.

Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem 2005;41:173-86.

Dargelos E, Poussard S, Brule C, Daury L, Cottin P. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie 2008;90:359-68.

Nair KS. Aging muscle. Am J Clin Nutr 2005;81:953-63.

Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004;113:115-23.

Reid MB, Li YP. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2001;2:269-72.

Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A. Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. Faseb J 1998;12:561-9.

Adams V, Mangner N, Gasch A, Krohne C, Gielen S, Hirner S, et al. Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J Mol Biol 2008;384:48-59.

Hasselgren PO, Fischer JE. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 2001;233:9-17.

Jagoe RT, Goldberg AL. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 2001;4:183-90.

Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci U S A 1998;95:12100-5.

Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. Faseb J 2004;18:39-51.

Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. Faseb J 2005;19:362-70.

Cai D, Frantz JD, Tawa NE, Jr., Melendez PA, Oh BC, Lidov HG et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004;119:285-98.

Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS, Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 2000;289:2363-6.

Allen DL, Cleary AS, Speaker KJ, Lindsay SF, Reed JM, Madden MC. Expression of components of the myostatin signaling pathway in fasting mouse skeletal muscle and adipose. Med Sci Sports Exerc 2008;40(5):S33.

Powers SK, Kavazis AN, DeRuisseau KC. Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 2005;288:R337-44.

Price SR, Bailey JL, Wang X, Jurkovitz C, England BK, Ding X et al. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 1996;98:1703-8.

May RC, Kelly RA, Mitch WE. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis. J Clin Invest 1987;79:1099-103.

Sostaric S, Pearce A, Gatt B, McKenna MJ, Stathis C, Goodman C. Effects of mild electro-stimulation treatment on healthy humans following exercise induced muscle damage. Med Sci Sports Exerc 2008;40(5):S76.

Kerksick C, Robertts M, Dalbo V, Willoughby D. Changes in skeletal muscle proteolytic gene expression after prophylactic supplementation of EGCG and NAC and eccentric damage. Med Sci Sports Exerc 2008;40(5):S109.

Moore NA, Devaney JM, Hoffman E, Zambraski E, Gordish H, Clarkson PM. Association of Akt2 genotypes and exercise muscle damage. Med Sci Sports Exerc 2008;40(5):S32.

Marcinek DJ, Smith SR, Remmen HV. Increased mitochondrial content in response to mitochondrial dysfunction in skeletal muscle of Cu, Zn superoxide dismutase knockout mice. Faseb J 2008;22:958.5.

Downloads

Publicado

2010-06-10