Os efeitos do treinamento de musculação com cargas baixas e oclusão vascular na hipertrofia e força
DOI:
https://doi.org/10.33233/rbfe.v9i4.3544Resumo
O treinamento de musculação com cargas baixas e oclusão vascular tem sido proposto como alternativa ao treinamento tradicional com cargas altas para aumentos de força e hipertrofia. Com isto, este estudo buscou analisar os achados mais recentes sobre os efeitos do treinamento de musculação com baixas cargas e oclusão vascular. Foram analisados onze artigos sobre a variação na força muscular, e dez deles mostraram aumento, enquanto um não mostrou mudanças em relação ao controle. Sobre a hipertrofia, oito artigos foram analisados, sete mostraram aumentos significativos de massa muscular, enquanto um não obteve maiores aumentos que o controle. Dos três artigos analisados verificando a diminuição da atrofia por desuso, todos obtiveram melhoras em relação ao controle. Conclui-se que o treinamento contra resistência com cargas baixas e oclusão vascular pode aumentar a força e a hipertrofia muscular, mas pesquisas adicionais são necessárias a respeito dos efeitos adversos do método.
Palavras-chave: oclusão vascular, força muscular, hipertrofia, musculação.
Referências
Meyer RA. Does blood flow restriction enhance hypertrophic signaling in skeletal muscle? J Appl Physiol 2006;100(5):1443-4.
Wernbom M, Augustsson J, Thomee’ R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 2007;37:225-64.
American College of Sports Medicine. Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 2002;34:364-80.
Wernbom M, Augustsson J, Raastad T. Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports 2008;18(4):401-16.
Fleck SJ, Kraemer WJ. Fundamentos do treinamento de força muscular. 2ª ed. Porto Alegre: Artes Médicas; 1999.
Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 2004;36:674-88.
Kubo K, Komuro T, Ishiguro N, Sato Y, Ishii N, Kanehisa H, Fukunaga T. Effects of low load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 2006;22:112-9.
Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days Kaatsu resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J Kaatsu Training Res 2005b;1:23-8.
Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol 2004;92:399-406.
Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc 2003;7:1203-8.
Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T. Efficacy of tourniquet ischemia for strength training with low resistance. Eur J Appl Physiol 1998;77:189-91.
Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 2000b;88(6):2097-2106.
Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 2004;54:585-92.
Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily Kaatsu resistance training. . Int J Kaatsu Training Res 2005;1:7-14.
Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 2002;86:308-14.
Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 2006;100:1460-6.
Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000c;32:2035-9.
Clark BC, Fernhall B, Ploutz-Snyder LL. Adaptations in human neuromuscular function following prolonged unweighting: I. Skeletal muscle contractile properties and applied ischemia efficacy. J Appl Physiol 2006;101:256-63.
Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc 2008;40:529-34.
Laurentino G, Ugrinowitsch C, Aihara AY, Fernandes AR, Parcell AC, Ricard M, Tricoli V. Effects of strength training and vascular occlusion. Int J Sports Med 2008;29:664-7.
Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005;35:339-61.
Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 2000a;88:61-65.
Takano H, Morita T, Lida H, Asada K, Kato M, Uno K et al. Hemodynamic and hormonal responses to a short term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 2005;95:65-73.
Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, François M et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol 2006;101:1616-22.
Elias AN, Wilson AF, Naqvi S, Pandian MR. Effects of blood pH and blood lactate on growth hormone, prolactin, and gonadotropin release after acute exercise in male volunteers. Proc Soc Exp Biol Med 1997;214(2):156-60.
Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG. Effect of acid–base balance on the growth hormone response to acute high intensity cycle exercise. J Appl Physiol 1994;76:821-9.
Ploutz-Snyder LL, Convertino VA, Dudley GA. Resistance exercise induced fluid shifts: change in active muscle size and plasma volume. Am J Physiol 1995;269:536-43.
Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 2005;37:955-63.
McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. J Appl Physiol 1999;24:96-107.
Rennie MJ. Claims for the anabolic effects of growth hormone: a case of the emperor’s new clothes? Br J Sports Med 2003:37(2):100-5.
Popov DV, Tsvirkun DV, Netreba AI, Tarasova OS, Prostova AB, Larina IM et al. Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Fiziol Cheloveka 2006;32:609-14.
Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Archiv 2003;447:247-53.
Goldspink G, Yang SY, Hameed M, Harridge S, Bouloux P. The role of MGF and other IGF-1 splice variants in muscle maintenance and hypertrophy. In: Kraemer WJ, Rogol, AD. The endocrine system in sports and exercise. Oxford: Blackwell Publishing; 2006. p.180-93.
Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc 2008;40:258-63.
Hinkle RT, Hodge KM, Cody DB, Sheldon RJ, Kobilka BK, Isfort RJ. Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the beta2 adrenergic receptor. Muscle and Nerve 2002;25:729-34.
Ryall JG, Sillence MN, Lynch GS. Systemic administration of beta2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. Br J Pharmacol 2006;147:587-95.
Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol 1965;28:560-80.
Houtman CJ, Stegeman DF, Van Dijk JP, Zwarts MJ. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations. J Appl Physiol 2003;95:1045-54.
Miller KJ, Garland SJ, Ivanova T, Ohtsuki T. Motor-unit behavior in humans during fatiguing arm movements. J Neurophysiol 1996;4:1629-36.
Yasuda T, Abe T, Sato Y, Midorikawa T, Kearns K, Inoue CF et al. Muscle fiber cross-sectional are is increased after two weeks of twice daily Kaatsu-resistance training. Int J Kaatsu Training Res 2005;1:65-70.
Powers SK, Howley ET. Fisiologia do ExercÃcio: Teoria e aplicação ao condicionamento e ao desempenho. 3ª ed. São Paulo: Manole; 2000.
Bitu-Moreno J, Francischetti I, Hafner L. Lesões de isquemia-reperfusão em músculos esqueléticos: fisiopatologia e novas tendências de tratamento, com ênfase em reperfusão controlada. J Vasc Bras 2002;1(2):113-20.
Nakajima T, Kurano M, Iida H, Takano H, Oonuma H, Morita T et al. Use and safety of KAATSU training: results of a national survey. Int J Kaatsu Training Res 2006;2:5-14.
Wernbom M, Augustsson J, Thomee R. Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads. J Strength Cond Res 2006;20:372-7.
Kawada S. What phenomena do occur in blood flow-restricted muscle? Int J Kaatsu Training Res 2005;1:37-44.
Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, Selsby JT, Criswell DS. In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 2006;100:258-65.
Zhan SJ, Truskey GA, Kraus WE. Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. Am J Physiolo Cell Physiol 2007;292:2057-69.
Shen W, Prisk V, Li Y, Foster W, Huard J. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol 2006;101:1215-21.
Thompson MG, Palmer RM. Signalling pathways regulating protein turnover in skeletal muscle. Cell Signal 1998;10:1-11.
Bondesen BA, Mills ST, Pavlath GK. The COX-2 pathway regulates growth of atrophied muscle via multiple mechanisms. Am J Physiol Cell Physiol 2006;290:1651-9.
Horsley V, Pavlath GK. Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2- dependent pathway. J Cell Biol 2003;161: 111-8.
Soltow QA, Betters JL, Sellman JE, Lira VA, Long JH, Criswell DS. Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 2006;38:840-6.
Trappe T, Raue U, Williams R, Carrithers J, Hickner R. Effects of age and resistance exercise on skeletal muscle interstitial prostaglandin F(2alpha). Prostaglandins Leukot Essent Fatty Acids 2006;74:175-81.
Kawada S, Ishii N. Skeletal musclehypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc 2005;37:1144-50.
Naito H, Powers SK, Demiral HA, Sugiura T, Dodd SL, Aoki J. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 2000;1(88):359-63.
Downloads
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).