Aspectos atuais sobre beta alanina, carnosina e exercício físico
DOI:
https://doi.org/10.33233/rbfe.v15i1.37Resumo
A carnosina é um dipeptídeo encontrado em concentrações elevadas no músculo esquelético humano, sintetizado a partir dos aminoácidos Beta alanina e histidina, tendo a beta alanina como precursor. Recentemente, foi demonstrado que níveis elevados de carnosina podem ser benéficos ao desempenho desportivo, através do tamponamento dos íons de hidrogênio, por minimizar a redução do pH intramuscular durante o exercício. Fatores como idade, sexo, tipo de fibra muscular e alimentação também são considerados variáveis determinantes nas concentrações desse composto. Logo, o objetivo desta revisão narrativa foi analisar os principais estudos que relataram sobre os fatores determinantes da concentração de carnosina intramuscular e os potenciais efeitos na performance esportiva através da suplementação de beta alanina. A presente revisão detectou que a suplementação de beta alanina pode ser considerada um recurso eficiente para o aumento no estoque dos níveis de carnosina em diversas populações como indivíduos fisicamente ativos, atletas e idosos, de ambos os sexos, além de melhorar o rendimento em modalidades esportivas e exercícios nas quais predominem alta intensidade.
Palavras-chave: β-alanina, carnosina muscular, fadiga muscular, tamponamento intramuscular.
Referências
Boldyrev AA. Carnosine and oxidative stress in cells and tissues. New York: Nova Science; 2007.
Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med 2010;40(3):247-63.
Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol 2010;109(4):1096-101.
Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients 2010;2(1):75-98.
Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 2000;65(7):757-65.
Harris R, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006;30(3):279-89.
Hill C, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2007;32(2):225-33.
Del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, et al. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity. Amino Acids 2012;43(1):49-56.
Matos VAF, Albuquerque Filho NJB, Rebouças GM, Felipe TR, Salgueiro CCM, Pinto EF. A carnosina diminui os efeitos da acidose muscular durante o exercÃcio. Revista Brasileira de Nutriçao Esportiva 2015;9(50):164-71.
Artioli G, Gualano B, Smith A, Stout J, Lancha Junior AH. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc 2010;42(6):1162-73.
Sale C, Hill CA, Ponte J, Harris RC. β-alanine supplementation improves isometric endurance of the knee extensor muscles. J Int Soc Sports Nutr 2012;9(1):26.
Mannion A, Jakeman PM, Dunnett M, Harris RC, Willan PL. Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur J Appl Physiol Occup Physiol 1992;64(1):47-50.
Baguet A, Everaert I, De Naeyer H, Reyngoudt H, Stegen S, Beeckman S, Achten E. Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. Eur J Appl Physiol 2011;111(10):2571-80.
Baguet A, Everaert I, Achten E, Thomis M, Derave W. The influence of sex, age and heritability on human skeletal muscle carnosine content. Amino Acids 2012;43(1):13-20.
Everaert I, Mooyaart A, Baguet A, Zutinic A, Baelde H, Achten E. Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids 2011;40(4):1221-29.
Harris R, Dunnett M, Greenhaff PL. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sports Sci 1998;16(7):639-43.
Harris R, Marlin DJ, Dunnett M, Snow DH, Hultman E. Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comp Biochem Physiol A Physiol 1990;97(2):249-51.
Sewell DA, Harris RC, Marlin DJ, Dunnett M. Estimation of the carnosine content of different fibre types in the middle gluteal muscle of the thoroughbred horse. J Physiol 1992;455:447-53.
Dunnett M, Harris RC, Soliman MZ, Suwar AA. Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Res Vet Sci 1997;62(3):213-16.
Stuerenburg HJ, Kunze K. Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr 1999;29(2):107-13.
Tallon MJ, Harris RC, Maffulli N, Tarnopolsky MA. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology 2007;8(2):129-137.
Baguet A, Koppo K, Pottier A, Derave W. β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol 2010;108(3):495-503.
Stout J, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 2007;32(3):381-6.
Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 2007;103(5):1736-43.
Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P. b-Alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 2009;41(4):898-903.
Parkhouse W, McKenzie DC, Hochachka PW, Ovalle WK. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 1985;58(1):14-17.
Stout J, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, Harris RC. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr 2008;5(1):1-6.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2016 Victor Araújo Ferreira Matos, Nailton José Brandão de Albuquerque Filho, Victor Hugo de Oliveira Segundo, Thiago Renee Felipe, Leticia Castelo Branco Peroba de Oliveira, Gleidson Mendes Rebouças, Edson Fonseca Pinto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).