COVID-19 and physical activity: What is the relation between exercise immunology and the current pandemic situation?
DOI:
https://doi.org/10.33233/rbfe.v19i2.4115Resumo
Exercise immunology is a strong and mysterious science in sports medicine, but studies were origin more than a 100 years ago, when Schulte had already described an exercise-induced leukocytosis as early as 1893 [1]. Since then, both cross-sectional and longitudinal studies in humans have demonstrated the profound impact that exercise can have on the immune system. That is exactly why it is fundamentally important in this pandemic time to elucidate many questions and direct the athletes and non-athletes to the due care...
Referências
Shephard RJ. The history of exercise immunology. In: Tipton C, ed. The history of exercise physiology. Champaign, IL: Human Kinetics; 2010
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020;382(13):1199-207 https://doi.org/10.1056/nejmoa2001316
World Health Organization Press Conference. The World Health Organization (WHO) has officially named the disease caused by the novel coronavirus as COVID-19. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. Nature Microbiology 2020. https://doi.org/10.1038/s41564-020-0695-z
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382(8):727-33. https://doi.org/10.1056/nejmoa2001017
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7
Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Advance in virus research; 2011. p.85-164. https://doi.org/10.1016/b978-0-12-385885-6.00009-2
General Office of National Health Commission; General Office of National Administration of Traditional Chinese Medicine. Diagnostic and treatment protocol for Novel Coronavirus Pneumonia. https://www.chinadaily.com.cn/pdf/2020/1.Clinical.Protocols.for.the.Diagnosis.and.Treatment.of.COVID-19.V7.pdf
Center for Disease Control and Prevention. Atlanta: CDC. Symptoms of Novel Coronavirus (2019-nCoV). 2020 https://www.cdc.gov/coronavirus/2019-ncov/
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;580(7803):E7. https://doi.org/10.1038/s41586-020-2202-3
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 27/02/2020. https://doi.org/10.1111/all.14238
Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and outcomes of 21 critically Ill patients with COVID-19 in Washington State. JAMA 2020;323(16):1612. https://doi.org/10.1001/jama.2020.4326
Team TNCPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020. China CDC Weekly 2020;2:113-22.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(1020)30566-30563
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018;104:8-13. https://doi.org/10.1016/j.cyto.2018.01.025
Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004;136(1):95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x
Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005;5(12):917-27. https://doi.org/10.1038/nri1732
Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;386(9997):995-1007. https://doi.org/10.1016/s0140-6736(15)60454-8
Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest 2020;130(5):2202-5. https://doi.org/10.1172/jci137647
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033-4. https://doi.org/10.1016/s0140-6736(20)30628-0
Herold TVJ, Arnreich C, Hellmuth JC, von Bergwelt-Baildon M, Klein M, Weinberger T. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRxiv 2020 https://doi.org/10.1101/2020.04.01.20047381
Fox SE, Akmatbekov A, JHarbert JL, Li G, 3Brown JQ, Vander Heide RS. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv 2020. https://doi.org/10.1101/2020.04.06.2005057
Channappanavar R et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016;19(2):181-93. https://doi.org/10.1016/j.chom.2016.01.007
Davidson S et al. Disease-promoting effects of type I interferons in viral, bacterial and coinfections. J Interf Cytokine Res 2015;35(4):252-64. https://doi.org/10.1089/jir.2014.0227
Shaw AC et al. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013;13(12):875-87. https://doi.org/10.1038/nri3547
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14(8):523-34. https://doi.org/10.1038/nrmicro.2016.81
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39(5):529-39. https://doi.org/10.1007/s00281-017-0629-x
Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Coronaviruses 2016. p.219-43. https://doi.org/10.1016/bs.aivir.2016.08.006
Walsh NP, Gleeson M, Shephard RJ et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev 2011;17:6–63. https://www.ncbi.nlm.nih.gov/pubmed/21446352
Campbell JP, Riddell NE, Burns VE et al. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun 2009;23(6):767-75. https://doi.org/10.1016/j.bbi.2009.02.011
Simpson RJ, Florida-James GD, Whyte GP, Black JR, Ross JA, Guy K. Apoptosis does not contribute to the blood lymphocytopenia observed after intensive and downhill treadmill running in humans. Res Sports Med 2007;15(3):157-74. https://doi.org/10.1080/15438620701405339
Simpson RJ. The effects of exercise on blood leukocyte numbers. In: Gleeson M, Bishop NC, Walsh NP, eds. Exercise Immunology. Oxford, UK, New York, USA: Routledge; 2013. p.64-105. https://doi.org/10.4324/9780203126417
Okutsu M, Suzuki K, Ishijima T, Peake J, Higuchi M. The effects of acute exerciseinduced cortisol on CCR2 expression on human monocytes. Brain Behav Immun 2008;22(7):1066-71. https://doi.org/10.1016/j.bbi.2008.03.006
Okutsu M, Ishii K, Niu KJ, Nagatomi R. Cortisol-induced CXCR4 augmentation mobilizes T lymphocytes after acute physical stress. Am J Physiol Regul Integr Comp Physiol 2005;288(3):R591–R599. https://doi.org/10.1152/ajpregu.00438.2004
Ortega E, Collazos ME, Maynar M, Barriga C, De la Fuente M. Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. Eur J Appl Physiol Occup Physiol 1993;66(1):60-4. https://doi.org/10.1007/bf00863401
Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol 1998;84(4):1252-9. https://doi.org/10.1152/jappl.1998.84.4.1252
Bishop NC, Gleeson M, Nicholas CW, Ali A. Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int J Sport Nutr Exerc Metab 2002;12(2):145-56. https://doi.org/10.1123/ijsnem.12.2.145
Pyne DB. Regulation of neutrophil function during exercise. Sports Med 1994;17(4):245-58. https://doi.org/10.2165/00007256-199417040-00005
Suzuki K, Nakaji S, Yamada M et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc 2003;35(2):348-55. https://doi.org/10.1249/01.mss.0000048861.57899.04
Gleeson M, McDonald WA, Cripps AW, Pyne DB, Clancy RL, Fricker PA. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol 1995;102:210-6. https://doi.org/10.1111/j.1365-2249.1995.tb06658.x
Lancaster GI, Halson SL, Khan Q, Drysdale P, Jeukendrup AE, Drayson MT, Gleeson M. Effect of acute exhaustive exercise and a 6-day period of intensified training on immune function in cyclists. J Physiol 2003;548P:O96. https://www.physoc.org/abstracts/effect-of-acute-exhaustive-exercise-and-a-6-day-period-of-intensified-training-on-immune-function-in-cyclists/
Lancaster GI, Halson SL, Khan Q, Drysdale P, Jeukendrup AE, Drayson MT, Gleeson M. The effects of acute exhaustive exercise and intensified training on type 1/type 2 T cell distribution and cytokine production. Exerc Immunol Rev 2004;10:91-106. https://www.ncbi.nlm.nih.gov/pubmed/15633589
Robson PJ, Blannin AK, Walsh NP, Bishop NC, Gleeson M. The effect of an acute period of intense interval training on human neutrophil function and plasma glutamine in endurance-trained male runners. J Physiol 1999;515:84-5.
Verde TJ, Thomas SG, Moore RW, Shek P, Shephard RJ. Immune responses and increased training of the elite athlete. J Appl Physiol 1992;73:1494-9. https://doi.org/10.1152/jappl.1992.73.4.1494
Gleeson M. Mucosal immune responses and risk of respiratory illness in elite athletes. Exerc Immunol Rev 2000;6:5-42.
Francis JL, Gleeson M, Pyne DB, Callister R and Clancy RL. Variation of salivary immunoglobulins in exercising and sedentary populations. Med Sci Sports Exerc 2005;37:571-8. https://doi.org/10.1249/01.mss.0000158191.08331.04
Gleeson M, Pyne DB and Callister R. The missing links in exercise effects on mucosal immunity. Exerc Immunol Rev 2004;10:107-28.
Allgrove JE, Gomes E, Hough J and Gleeson M. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci 2008;26:653-61. https://doi.org/10.1080/02640410701716790
Bishop NC and Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci 2009;14:4444-56.
Klentrou P, Cieslak T, MacNeil M, Vintinner A and Plyley M. Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. Eur J Appl Physiol 2002;87:153-8. https://doi.org/10.1007/s00421-002-0609-1
Putlur P, Foster C, Miskowski JA, Kane MK, SBurton SE, Scheett TP, McGuigan MR. Alteration of immune function in women collegiate soccer players and college students. J Sports Sci Med 2004;3;234-43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938062/
Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 1994;26(2):140-6. https://doi.org/10.1249/00005768-199402000-00003
Simpson RJ, Campbell JP, Gleeson M et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev 2020;26:8–22. http://eir-isei.de/2020/eir-2020-008-article.pdf
Kohut ML, Arntson BA, Lee W et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine 2004;22(17/18):2298-306. https://doi.org/10.1016/j.vaccine.2003.11.023
Woods JA, Keylock KT, Lowder T et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc 2009;57(12):2183-91. https://doi.org/10.1111/j.1532-5415.2009.02563.x
Spielmann G, McFarlin BK, O’Connor DP, Smith PJ, Pircher H, Simpson RJ. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav Immun 2011;25(8):1521-9. https://doi.org/10.1016/j.bbi.2011.07.226
Shinkai S, Kohno H, Kimura K et al. Physical activity and immune senescence in men. Med Sci Sports Exerc 1995;27(11):1516-26. https://doi.org/10.1249/00005768-199511000-00008
Pedersen BK, Bruunsgaard H. Possible beneficial role of exercise in modulating lowgrade inflammation in the elderly. Scand J Med Sci Sports 2003;13(1):56-62. https://doi.org/10.1034/j.1600-0838.2003.20218.x
Yan H, Kuroiwa A, Tanaka H, Shindo M, Kiyonaga A, Nagayama A. Effect of moderate exercise on immune senescence in men. Eur J Appl Physiol 2001;86(2):105-11. https://doi.org/10.1007/s004210100521
Woods JA, Ceddia MA, Wolters BW, Evans JK, Lu Q, McAuley E. Effects of 6 months of moderate aerobic exercise training on immune function in the elderly. Mech Ageing Dev 1999;109(1):1-19. https://doi.org/10.1016/s0047-6374(99)00014-7
Simpson RJ, Lowder TW, Spielmann G, Bigley AB, Lavoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev 2012;11:404-20. https://doi.org/10.1016/j.arr.2012.03.003
ElKassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol 2010;7(1):1-7. https://doi.org/10.3109/15476910903453296
Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic [published ahead of print, 2020 Apr 9]. Prog Cardiovasc Dis 2020. https://doi.org/10.1016/j.pcad.2020.04.006
Soligard T, Steffen K, Palmer D, et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: A prospective study of 11274 athletes from 207 countries. Br J Sports Med 2017;51(17):1265-71. https://doi.org/10.1136/bjsports-2017-097956
Dvorak J, Junge A, Derman W, Schwellnus M. Injuries and illnesses of football players during the 2010 FIFA World Cup. Br J Sports Med 2011;45(8):626-30. https://doi.org/10.1136/bjsm.2010.079905
Davison G, Simpson RJ. Immunity. In: Lanham-New SA, Stear SJ, Shirreffs SM, Collins AL, eds. Sport and exercise nutrition. Oxford, UK: Wiley-Blackwell; 2011. p.281-303.
Walsh NP, Gleeson M, Pyne DB et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev 2011;17:64-103.
Gleeson M, ed. Immune function in sport and exercise. Edinburgh: Elsevier; 2005.
Bermon S. Airway inflammation and upper respiratory tract infection in athletes: is there a link? Exerc Immunol Rev 2007;13:6-14.
Helenius I, Lumme A, Haahtela T. Asthma, airway inflammation and treatment in elite athletes. Sports Med 2005;35:565-574. https://doi.org/10.2165/00007256-200535070-00002
Bjermer L, Anderson SD. Bronchial hyperresponsiveness in athletes: mechanisms for development. Eur Respir Mon 2005;33:19-34. https://doi.org/10.1183/1025448x.00033004
Varandas F, Medina D, Gomez A, Della Villa S. Late rehabilitation on the field. In: Injury and health problem in football. Berlin Heidelberg: Springer; 2017. p.571-9.
World Health Organization. Global report on trends in prevalence of tobacco smoking. Geneva, Switzerland: WHO; 2015.
Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002;2:372-7. https://doi.org/10.1038/nri803
Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 2009;9:377-84. https://doi.org/10.1038/nri2530
Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS, Sohal SS. smoking upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). J Clin Med 2020;9(3):841. https://doi.org/10.3390/jcm9030841
Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2 [published online ahead of print, 2020 Apr 24]. Am J Respir Crit Care Med 2020. https://doi.org/10.1164/rccm.202003-0693LE
Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104(3):246-51. https://doi.org/10.1016/j.jhin.2020.01.022
Chen P, Mao L, Nassis GP, Harmer P, Ainsworth BE, Li F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Health Sci 2020;9(2):103-4. https://doi.org/10.1016/j.jshs.2020.02.001
Downloads
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).