Efeitos do exercício de agachamento por trás na atividade mioelétrica de membros inferiores em homens treinados: uma revisão sistemática
DOI:
https://doi.org/10.33233/rbfex.v20i1.4396Palavras-chave:
eletromiografia; exercício de agachamento; treinamento de resistência; força muscularResumo
Objetivo: O objetivo deste estudo foi descrever os efeitos do exercício de agachamento por trás sobre a atividade mioelétrica de membros inferiores em homens treinados. Métodos: Foi realizada uma revisão sistemática seguindo as recomendações do PRISMA. Foram pesquisadas as bases de dados Medline (Pubmed), Scielo, Scopus, SPORTDiscus e Lilacs. Os termos de pesquisa incluíram eletromiografia, exercício, treinamento de resistência e agachamento. Foram incluídos estudos experimentais que descreveram o exercício de agachamento por trás por meio da eletromiografia de superfície (EMG) em homens com experiência em treinamento resistido (TR) e exercício de agachamento por trás em ângulos de 60º a 90º. Resultados: Oito estudos preencheram os critérios de inclusão. As intervenções dos estudos incluídos variaram de 2 a 7 dias. Os protocolos demonstraram melhorar o sistema neuromuscular e proporcionar maior aquisição de força nos músculos envolvidos na realização do exercício de agachamento por trás (p < 0,05). Foram analisados 37 músculos, com predomínio dos músculos vasto lateral, vasto medial, glúteo máximo e reto femoral. Conclusão: Os estudos investigados nesta revisão mostraram que o exercício de agachamento por trás em ângulos de 60º a 90º aumentou a atividade mioelétrica de membros inferiores registrada em cargas de 30% e 100% de 1RM em homens experientes em TR. Porém, mais estudos com maior qualidade metodológica são necessários na análise do exercício de agachamento para reduzir o risco de viés.
Referências
Deniz E, Yavuz H. Evaluation of muscle activities during different squat variations using electromyography signals. Springer Nature Switzerland 2020;1095:1-7. doi: 10.1007/978-3-030-35249-3_114
Monajati A, Larumbe-Zabala E, Goss-Sampson M, Naclerio F. Surface electromyography analysis of three squat exercises. J Hum Kinet 2018;67:73-83. doi: 10.2478/hukin-2018-0073
Rasch PJ, Burke RK. Kinesiology and applied anatomy (5th ed.). Philadelphia/PA: Lea and Febiger; 1974. 604p. doi: 10.1093/ptj/55.6.712
Escamilla RF, Fleisig GS, Zheng N, Lander JE, Barrentine SW, Andrews JR et al. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc 2001;33(9):1552-66. doi: 10.1097/00005768-200109000-00020
Soleyn N. Analyzing the squat. The Aasgaard Company 2013. p.2-8.
Tillaar RVD, Andersen V, Saeterbakken AH. Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS ONE 2019;14(5):1-13. doi: 10.1371/journal.pone.0217044
Serrão JC, Mezêncio B, Claudino JG, Rafael SR, Miyashiro PL et al. Effect of 3 different applications of Kinesio Taping Denko® on electromyographic activity: inhibition or facilitation of the quadriceps of males during squat exercise. J Sports Sci Med 2016;15(3):403-9.
Yavuz HU, Erdag D. Kinematic and electromyographic activity changes during back squat with submaximal and maximal loading. Appl Bionics Biomech 2017:9084725. doi: 10.1155/2017/9084725
Safee MKM, Wan AWAB, Ibrahim F, Abu ONA, Abdul MNA. Electromyography activity of the rectus femoris and biceps femoris muscles during prostration and squat exercise. Int J Bioeng Life Sci 2014;8(12):860-3. doi: 10.5281/zenodo.1099010
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339-b2700. doi: 10.1136/bmj.b2700
Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355-i4919. doi: 10.1136/bmj.i4919
Clark D, Lambert MI, Hunter AM. Reliability of trunk muscle electromyography in the loaded back squat exercise. Int J Sports Med 2016;37(6):448-56. doi: 10.1055/s-0035-1569366
Fletcher IM, Bagley A. Changing the stability conditions in a back squat: the effect on maximum load lifted and erector spinae muscle activity. Sports Biomech 2014;13(4):380-90. doi: 10.1080/14763141.2014.982697
Gomes WA, Brown LE, Soares EG, Silva JJ, et al. Kinematic and sEMG analysis of the back squat at different intensities with and without knee wraps. J Strength Cond Res 2015;9(9):2482-7. doi: 10.1519/JSC.0000000000000922
Mina MA, Blazevich AJ, Giakas G, Kay AD. Influence of variable resistance loading on subsequent free weight maximal back squat performance. J Strength Cond Res 2014;28(10):2988-95. doi: 10.1519/jsc.0000000000000471
Mina MA, Blazevich AJ, Giakas G, Seitz LB, Kay AD. Chain-loaded variable resistance warm-up improves free-weight maximal back squat performance. Eur J Sport Sci 2016;16(8):932-9. doi: 10.1080/17461391.2016.1199740
Silva JJ, Schoenfeld BJ, Marchetti PN, Pecoraro SL et al. Muscle activation differs between partial and full back squat exercise with external load equated. J Strength Cond Res 2017;31(6):1688-93. doi: 10.1519/JSC.0000000000001713
Silva JB, Lima VP, Castro JBP, Paz GA, Novaes JS, Nunes RAM, Vale RGS. Analysis of myoelectric activity, blood lactate concentration and time under tension in repetitions maximum in the squat exercise. J Phys Educ Sport 2018;18(4):2478-85. doi: 10.7752/jpes.2018.04371
Yavuz HU, Erdağ D, Amca AM, Aritan S. Kinematic and EMG activities during front and back squat variations in maximum loads. J Sports Sci 2015;33(10):1058-66. doi: 10.1080/02640414.2014.984240
McBride JM, Larkin TR, Dayne AM, Haines TL, Kirby TJ. Effect of absolute and relative loading on muscle activity during stable and unstable squatting. Int J Sports Physiol Perf 2010;5(2):177-83. doi: 10.1123/ijspp.5.2.177
Contreras AD, Vigotsky BJ, Schoenfeld C, Beardsley JC. A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyography amplitude in the parallel, full, and front squat variations in resistance trained females. J Appl Biomech 2016;32(1):16-22. doi: 10.1123/jab.2015-0113
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 2002;93(4):1318–26. doi: 10.1152/japplphysiol.00283.2002
Campos GE, Luecke TJ, Wendeln H K, Toma K et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 2002;8(1):50-60. doi: 10.1007/s00421-002-0681-6
Kaneko M, Fuchimoto T, Toji H, Suei K. Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scand J Sports Sci 1983;5(2):50-5.
Cormie P, Deane R, McBride JM. Methodological concerns for determining power output in the jump squat. J Strength Cond Res 2007;21(2):424-30. doi: 10.1519/R-19605.1
Senter C, Hame S. L. Biomechanical analysis of tibial torque and knee flexion angle: implications for understanding knee injury. Sports Med 2006;36(8):635-41. doi: 10.2165/00007256-200636080-00001
Gullett JC. Tillman MD, Gutierrez GM, Chow JW. A biomechanical comparison of back and front squats in healthy trained individuals. J Strength Cond Res 2009;23(1):284-92. doi: 10.1519/JSC.0b013e31818546bb
Rice ADA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 2010;40(3):250-66. doi: 10.1016/j.semarthrit.2009.10.001
Langford GA, McCurdy KW, Ernest JM, Doscher M, Walters SD. Specificity of machine, barbell, and water-filled log bench press resistance training on measures of strength. J Strength Cond Res 2007;21(4):1061-66. doi: 10.1519/R-21446.1
Seitz LB, Trajano GS, Dal Maso F, Haff GG, Blazevich AJ. Postactivation potentiation during voluntary contractions after continued knee extensor task-specific practice. Appl Physiol Nutr Metab 2015;40(3):230-7. doi: 10.1139/apnm-2014-0377
Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR et al. Exercise-induced hormone elevations are related to muscle growth. J Strength Cond Res 2017;31(1):45-53. doi: 10.1519/JSC.0000000000001491
American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009;41(3):687-8. doi: 10.1249/MSS.0b013e3181915670
Oliveira LA, Rivera MF, Marzo ESG. Contribuições da velocidade de movimento para o treinamento resistido: uma revisão narrativa. Rev Bras Fisiol Exerc 2020;19(4):322-31. doi: 10.33233/rbfex.v19i4.3892
Downloads
Arquivos adicionais
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Rogério Santos de Aguiar, Juliana Brandão Pinto de Castro, Andressa Oliveira Barros dos Santos, Giullio César Pereira Salustiano Mallen da Silva, Fabiana Rodrigues Scartoni, Rodolfo de Alkmim Moreira Nunes, Rodrigo Gomes de Souza Vale
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).