Limiar glicêmico: validade com limiar de lactato e concordância com a variabilidade da frequência cardíaca
DOI:
https://doi.org/10.33233/rbfex.v21i6.5409Palavras-chave:
limiar anaeróbio, intensidade do exercício, glicemia, frequência cardíacaResumo
Introdução: Na intensidade do limiar de lactato (LL2) ocorre um aumento da atividade do sistema nervoso simpático, aumento das catecolaminas plasmáticas e da glicemia, que representam o limiar glicêmico (LG) e o segundo limiar de variabilidade da frequência cardíaca (LVFC2). Esses limiares podem apresentar concordância e permitir a prescrição do exercício por meios mais acessíveis. Objetivo: O objetivo do estudo foi analisar a validade concorrente do limiar glicêmico com o limiar de lactato; e sua concordância como o limiar de variabilidade da frequência cardíaca para identificação do segundo limiar anaeróbio. Métodos: 31 homens saudáveis e ativos (22 ± 2 anos) foram submetidos a um protocolo escalonado de Teste Cardiopulmonar de Exercício (TCPE), monitorados por medidas de glicemia, lactacemia e variabilidade da frequência cardíaca para a identificação do LG, LL2 e LVFC2. O coeficiente de correlação intraclasse (CCI), erro típico (ET), coeficiente de variação (CV) e Bland-Altman testaram a confiabilidade e concordância. Resultados: A HR apresentou boa confiabilidade (ICC = 0,80) e boa exatidão (ET = 4,7% e CV = 6,6%) para o LG com LL2. Para o LG e LVFC2, a FC apresentou confiabilidade moderada (ICC = 0,60) e boa precisão (ET = 5,9% e CV = 8,4%). Conclusão: O LG e o LL2 apresentaram validade concorrente para identificação do segundo limiar anaeróbio. A concordância entre o LG e o LVFC2 é reforçada pelos eventos fisiológicos que os relacionam.
Referências
Peric R, Drobnic FM, Baker JS. Feasibility of individualized aerobic threshold-based exercise on ventilatory efficiency in sedentary adult asthma patients. Minerva Pneumol. 2018;57(4):92-8. doi: 10.23736/S0026-4954.18.01829-1
Weatherwax RM, Harris NK, Kilding AE, Dalleck LC. The incidence of training responsiveness to cardiorespiratory fitness and cardiometabolic measurements following individualized and standardized exercise prescription: study protocol for a randomized controlled trial. Trials. [Internet]. 2016 [citado 2022 Jan 8];17(1):601. Disponível em: http://trialsjournal.biomedcentral.com/articles/10.1186/s13063-016-1735-0
Azevedo PHSM, Garcia A, Duarte JMP, Rissato GM, Carrara VKP, Marson RA. Limiar Anaeróbio e Bioenergética: uma abordagem didática. Revista da Educação Física/UEM 2009 [citado 2022 Jan 8];20(3):453-64. doi: 10.4025/reveducfis.v20i3.4743
Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. J Physiol. 2021;599(3):737–67. doi: 10.1113/JP279963
Peinado AB, Rojo JJ, Calderón FJ, Maffulli N. Responses to increasing exercise upon reaching the anaerobic threshold, and their control by the central nervous system. BMC Sports Sci Med Rehabil. 2014;6(1):1-7. doi: 10.1186/2052-1847-6-17
Gaskill SE, Ruby BC, Walker AVAJ, Sanchez OA, Serfass RC, Leon AS. Validity and reliability of combining three methods to determine ventilatory threshold. Med Sci Sport Exerc. 2001;33(11):1841-8. doi: 10.1097/00005768-200111000-00007
Okano AH, Altimari LR, Simões HG, Moraes AC de, Nakamura FY, Cyrino ES, et al. Comparação entre limiar anaeróbio determinado por variáveis ventilatórias e pela resposta do lactato sanguíneo em ciclistas. Rev Bras Med do Esporte. 2006;12(1):39-44. doi: 10.1590/S1517-86922006000100008
Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol Occup Physiol. 1979;42(1):25-34. doi: 10.1007/BF00421101
Chmura J, Nazar K, Kaciuba-Uscilko H. Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int J Sports Med. 1994;15(4):172-6. doi: 10.1055/s-2007-1021042
Powers SK, Howley ET. Fisiologia do Exercício: Teoria e aplicação ao condicionamento e ao desempenho. 9th ed. São Paulo: Manole; 2017. 672 p.
Delevatti RS, Kanitz AC, Alberton CL, Marson EC, Pantoja PD, Pinho CDF, et al. Glycemic threshold as an alternative method to identify the anaerobic threshold in patients with type 2 diabetes. Front Physiol. 2018;9:1-8. doi: 10.3389/fphys.2018.01609
Simões HG, Silvia C, Campbell G, Kokubun E. Determinação do limiar anaeróbio por meio de dosagens glicêmicas e lactacidêmicas em testes de pista para corredores. Rev Paul Educ Fís. 1998;12(1):17-30. doi: 10.11606/issn.2594-5904.rpef.1998.139529
Karapetian GK, Engels HJ, Gretebeck RJ. Use of heart rate variability to estimate LT and VT. Int J Sports Med. 2008;29:652-7. doi: 10.1055/s-2007-989423
Perrout JR, Dal’Molin MAP. Heart rate variability threshold. Med Sci Sport Exerc. [Internet]. 1998 [citado 2022 Jan12];30(Suppl):250. Disponível em: http://journals.lww.com/00005768-199805001-01423
Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497-504. doi: 10.1079/BJN19780152
Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27 p. 1292-301. doi: 10.1249/00005768-199509000-00009
Simões HG, Grubert Campbell CS, Kokubun E, Denadai BS, Baldissera V. Blood glucose responses in humans mirror lactate responses for individual anaerobic threshold and for lactate minimum in track tests. Eur J Appl Physiol Occup Physiol. 1999;80(1):34-40. doi: 10.1007/s004210050555
Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol Occup Physiol. 1979 Sep;42(1):25-34. doi: 10.1007/BF00421101
Pires FO, Silva AEL, Gagliardi JFL, Barros RV, Kiss MAPDM. Caracterização da curva do lactato sanguíneo e aplicabilidade do modelo Dmax durante protocolo progressivo em esteira rolante. Rev Bras Med do Esporte [Internet]. 2006 [citado Fev 2022];12(2):71-5. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922006000200003&lng=pt&tlng=pt
Perrotta AS, Jeklin AT, Hives BA, Meanwell LE, Warburton DER. Validity of the elite hrv smartphone application for examining heart rate variability in a field-based setting. J Strength Cond Res [Internet]. 2017 Aug;31(8):2296-302. doi: 10.1519/JSC.0000000000001841
Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-aho PO, Karjalainen PA. Kubios HRV – Heart rate variability analysis software. Comput Methods Programs Biomed [Internet]. 2014 [citado 2022 Fev 12];113(1):210-20. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0169260713002599
Mankowski RT, Michael S, Rozenberg R, Stokla S, Stam HJ, Praet SFE. Heart-rate variability threshold as an alternative for spiro-ergometry testing. J Strength Cond Res. 2017;31(2):474-9. doi: 10.1519/JSC.0000000000001502
Nascimento EMF, Kiss MAPDM, Santos TM, Lambert M, Pires FO. Determination of lactate thresholds in maximal running test by heart rate variability data set. Asian J Sports Med [Internet]. 2017 Aug 9. doi: 10.5812/asjsm.58480
Koo TK, Li MY. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med [Internet]. 2016;15(2):155-63. doi: 10.5812/asjsm.58480
Hopkins WG. Correlation coefficient: a new view of statistics [Internet]. 2000 [citado 2020 Fev 17]. Disponível em: http://www.sportsci.org/resource/stats/index.html
Motoyama YL, Pereira PEA, Esteves GDJ, Duarte JMP, Carrara VKP, Rissato GM, et al. Métodos alternativos para estimar a velocidade da máxima fase estável de lactato em adultos jovens fisicamente ativas. Rev Bras Cineantropom Desemp Hum. 2014;16(4):419. doi: 10.1590/1980-0037.2014v16n4p419
Rocha C, Canellas A, Monteiro D, Antoniazzi M, Azevedo P. Changes in individual glucose threshold during military training. Int J Sports Med. 2010;31(7):482-5. doi: 10.1055/s-0030-1248284
Sotero RC, Pardono E, Landwehr R, Campbell CSG, Simoes HG. Blood glucose minimum predicts maximal lactate steady state on running. Int J Sports Med. 2009 Sep 30;30(09):643-6. doi: 10.1055/s-0029-1220729
Weatherwax RM, Harris NK, Kilding AE, Dalleck LC. Incidence of VO2max responders to personalized versus standardized exercise prescription. Med Sci Sport Exerc. [Internet]. 2019 [citado 2022 Fev 15];51(4):681-91. Available from: http://journals.lww.com/00005768-201904000-00010
Nilton T, Souza T, Alexandra S, Yamaguti L, Simões HG. Identificação do lactato mínimo e glicose mínima em indivíduos fisicamente ativos. Rev Bras Ciência e Mov. [Internet]. 2003 [citado 2022 Mar 3];71-5. Disponível em: https://pesquisa.bvsalud.org/portal/resource/pt/lil-524712
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Luciana Carletti, Igor Ziviani Araujo, Leticia Nascimento dos Santos Neves, Victor Hugo Gasparini Neto, Richard Diego Leite
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).