Variabilidade da frequência cardíaca: uma revisão da literatura sobre o registro, processamento e interpretação do sinal, fatores influenciadores e aplicabilidade ao exercício físico
DOI:
https://doi.org/10.33233/rbfex.v21i6.5411Palavras-chave:
sistema nervoso autônomo, variabilidade da frequência cardíaca, treinamento físico, eletrocardiogramaResumo
Objetivo: Esta revisão narrativa buscou abordar a variabilidade da frequência cardíaca (VFC) em relação aos conceitos e definições, formas de registro e processamento do sinal, interpretação do sinal, fatores influenciadores e aplicações ao exercício. Métodos: Levantamento bibliográfico de trabalhos publicados entre 2000 e 2022 nas base de dados PubMed, Scopus, Web of Science, Scielo. Resultados e discussão: A VFC é um método não invasivo de mensurar a atuação do sistema nervoso autônomo no coração, que vem sendo utilizada como marcador de saúde física e mental. A mensuração da VFC pode ser feita através do registro do eletrocardiograma ou frequencímetro, que permitem a extração de diversos parâmetros da VFC utilizando métodos lineares e não lineares. Conclusão: A VFC é uma variável que pode ser influenciada por diversos fatores, e seu papel pode ser explicado com base em quatro teorias. No que se refere ao treinamento físico, pode ser usada como um marcador de controle de intensidade de exercício.
Referências
Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134(35-36):514-22. doi: 10.4414/smw.2004.10321
Berntson GG, Bechara A, Damasio H, Tranel D, Cacioppo JT. Amygdala contribution to selective dimensions of emotion. Soc Cogn Affect Neurosci. 2007;2(2):123-9. doi: 10.1093/scan/nsm008
Koeppen BM, Stanton BA. Berne y Levy. Fisiología+ StudentConsult. Spain: Elsevier Health Sciences; 2009.
Brownley K, Hurwitz B, Schneiderman N. Cardiovascular Psychophysiology. In: Cacioppo T, Tassinary LG, Berntson GG, eds. Handbook of Psychophysiology. Cambridge, UK: Cambridge University Press; 2000. p. 224-64.
Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019;38(1):1-8. doi: 10.1186/s40101-019-0193-2
Cambri LT, Fronchetti L, Gevaerd MS. Variabilidade da frequência cardíaca e controle metabólico. Arq Sanny Pesq Saúde. 2008;1(1):72-82.
Ferreira M, Messias M, Vandereli LCM, Pastre CM. Caracterização do comportamento caótico da variabilidade da frequência cardíaca (VFC) em jovens saudáveis. Trends in Applied and Computational Mathematics. 2010;11(2):50.doi: 10.5540/tema.2010.011.02.0141
Fronchetti L, Nakamura FY, Lima-Silva AE, Lima JRP. Effects of high-intensity interval training on heart rate variability during exercise. J Exerc Physiol Online [Internet]. 2007[cited 2022 Jan 2];10(4):1-9. Available from: https://www.researchgate.net/publication/257874986_Effects_of_high-intensity_interval_training_on_heart_rate_variability_during_exercise
Shaffer FR, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol. 2014;5:1040. doi: 10.3389/fpsyg.2014.01040
Bae TW, Kwon KK. ECG PQRST complex detector and heart rate variability analysis using temporal characteristics of fiducial points. Biomed Signal Process Control. 2021;66:102291. doi: 10.1016/j.bspc.2020.102291
Task F. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354-81.
Barbosa MPR, Netto Junior J, Cassemiro BM, Bernardo AFB, Silva AKB, Silva AKF, Vanderlei, et al. Effects of functional training on geometric indices of heart rate variability. J Sport Health. Sci 2016;5(2):183-9. doi: 10.1016/j.jshs.2014.12.007
Ribeiro JP, Moraes Filho RS. Variabilidade da freqüência cardíaca como instrumento de investigação do sistema nervoso autônomo. Rev Bras Hipertens. 2005;25(3)14-20.
Goldstein DS, Bentho O, Park M, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 2011;96(12):1255-61. doi: 10.1113/expphysiol.2010.056259
Billman GE.The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26. doi: 10.3389/fphys.2013.00026
Kim JB, Seo BS, Kim JH. Effect of arousal on sympathetic overactivity in patients with obstructive sleep apnea. Sleep Med. 2019;62:86-91. doi: 10.1016/j.sleep.2019.01.044
Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213
Shaffer F, Ginsberg J. An overview of heart rate variability metrics and norms. Frontiers in Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258
Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, Wysocki H. Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci 2007;57(1):63-71. doi: 10.2170/physiolsci.RP005506
Quintana DS, Heathers JA. Considerations in the assessment of heart rate variability in biobehavioral research. Front Psychol. 2014;5:805. doi: 10.3389/fpsyg.2014.00805
Vanderlei, L.C.M., Pastre CM, Freitas Junior IF, Godoy MF. Índices geométricos de variabilidade da frequência cardíaca em crianças obesas e eutróficas. Arq Bras Cardiol. 2010;95(1):35-40. doi: 10.1590/S0066-782X2010005000082
Acharya UR, Joseph PK, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031-51. doi: 10.1007/s11517-006-0119-0
Kitlas A, Oczeretko E, Kowalewski M, Borowska M, Urban M. Nonlinear dynamics methods in the analysis of the heart rate variability. Annales Academicae Medicae Bialostocensis. 2005;50(Suppl 2):46-7.
Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci. 2003;4(6):481. doi: 10.1038/nrn1118
Lombardi F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation. 2000;101:8-10. doi: 10.1161/01.cir.101.1.8
Porges SW. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology. 1995;32(4):301-18. doi: 10.1111/j.1469-8986.1995.tb01213.x
Porges SW. The polyvagal theory: Phylogenetic contributions to social behavior. Physiol Behav. 2003;79(3):503-13. doi: 10.1016/s0031-9384(03)00156-2
Grossman P,Taylor EW. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74(2):263-85.
Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201-16. doi: 10.1016/s0165-0327(00)00338-4
Lehrer P, Kaur K, Sharma A, Shah K. Heart rate variability biofeedback improves emotional and physical health and performance: a systematic review and meta analysis. Appl Psychophysiol Biofeedback. 2020;45:109-29. doi: 10.1007/s10484-020-09466-z
Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014;5:756. doi: 10.3389/fpsyg.2014.00756
Monteze NM, Souza BB, Alves HJP, Oliveira FLP, Oliveira JM, Freitas SN, et al. Heart rate variability in shift workers: responses to orthostatism and relationships with anthropometry, body composition, and blood pressure. Biomed Res Int. 2015;2015:329057. doi: 10.1155/2015/329057
Koenig J, Jarczok MN, Warth M, Ellis RJ, Bach C, Hillecke TK, et al. Body mass index is related to autonomic nervous system activity as measured by heart rate variability - a replication using short term measurements. J Nutr Health Aging. 2014:1-3. doi: 10.1007/s12603-014-0022-6
Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R, et al. Heart rate variability today. Prog Cardiovasc Dis. 2012;55(3):321-31. doi: 10.1016/j.pcad.2012.09.001.
Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288-310. doi: 10.1016/j.neubiorev.2016.03.007
Sammito S, Böckelmann I. Reference values for time-and frequency-domain heart rate variability measures. Heart Rhythm. 2016;13(6):1309-16. doi: 10.1016/j.hrthm.2016.02.006
Almeida-Santos MA, Barreto-Filho JA, Oliveira JLM, Reis FP, Oliveira CCC, Sousa ACS. Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr. 2016;63:1-8. doi: 10.1016/j.archger.2015.11.011
Nunan D, Sandercock GR, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol 2010;33(11):1407-17. doi: 10.1111/j.1540-8159.2010.02841.x
Hayano J, Yasuma F. Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 2003;58(1):1-9. doi: 10.1016/s0008-6363(02)00851-9
Sammito S, Sammito W, Böckelmann I. The circadian rhythm of heart rate variability. Biological Rhythm Research. 2016;47(5):717-30. doi: 10.1080/09291016.2016.1183887
Li X, Shaffer ML, Rodriguez-Colon S, He F, Wolbrette DL, Alagona Jr P, et al. The circadian pattern of cardiac autonomic modulation in a middle-aged population. Clin Auton Res. 2011;21(3):143-50. doi: 10.1007/s10286-010-0112-4
Yasuma F, Hayano JI. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125(2):683-90. doi: 10.1378/chest.125.2.683
Berntson GG, Bigger Junior T, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623-48. doi: 10.1111/j.1469-8986.1997.tb02140.x
Quintana D, Alvares GA, Heathers J. Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication. Transl Psychiatry. 2016;6(5):e803-e803.doi: 10.1038/tp.2016.73
Lu CL., Zou X, Orr WC, Chen JD. Postprandial changes of sympathovagal balance measured by heart rate variability. Dig Dis Sci. 1999;44(4):857-61. doi: 10.1023/a:1026698800742
Cansel M, Taşolar H, Yağmur J, Ermiş N, Açıkgöz N, Eyyüpkoca F, et al. The effects of Ramadan fasting on heart rate variability in healthy individuals: A prospective study. Anadolu Kardiyol Derg. 2014;14(5). doi: 10.5152/akd.2014.5108
Pivik R, Dykman RA, Tennal K, Y Gu Y. Skipping breakfast: gender effects on resting heart rate measures in preadolescents. Physiol Behav. 2006;89(2):270-80. doi: 10.1016/j.physbeh.2006.06.001
Tak LM, Riese H, Bock GH, Manoharan A, Kok IC, Rosmalen JGM. As good as it gets? A meta-analysis and systematic review of methodological quality of heart rate variability studies in functional somatic disorders. Biol Psychol. 2009;82(2):101-10. doi: 10.1016/j.biopsycho.2009.05.002
Routledge HC, Chowdhary S, Coote JH, Townend JN. Cardiac vagal response to water ingestion in normal human subjects. Clin Sci. 2002;103(2):157-62. doi: 10.1042/cs1030157
Scott EM, Greenwood JP, Gilbey SG, Stoker JB, Mary DA. Water ingestion increases sympathetic vasoconstrictor discharge in normal human subjects. Clin Sci 2001;100(3):335-42.
Fagius J, Karhuvaara S. Sympathetic activity and blood pressure increases with bladder distension in humans. Hypertension. 1989;14(5):511-17. doi: 10.1161/01.hyp.14.5.511
Rossi P, Andriesse GI, Oey PL, Wieneke GH, Roelofs JM, Akkermans LM. Stomach distension increases efferent muscle sympathetic nerve activity and blood pressure in healthy humans. J Neurol Sci. 1998;161(2):148-55. doi: 10.1016/s0022-510x(98)00276-7
Heathers JA, Everything Hertz: methodological issues in short-term frequency-domain HRV. Front Physiol. 2014;5:177. doi: 10.3389/fphys.2014.00177
Arastoo S, Haptonstall KP, Choroomi Y, Moheimani R, Nguyen K, Tran E, et al. Acute and chronic sympathomimetic effects of e-cigarette and tobacco cigarette smoking: role of nicotine and non-nicotine constituents. Am J Physiol Heart Circ Physiol. 2020;319(2):H262-H270. doi: 10.1152/ajpheart.00192.2020
Cacciotti-Saija C, Quintana DS, Alvares GA, Hickie IB, Guastella AJ. Reduced heart rate variability in a treatment-seeking early psychosis sample. Psych Res. 2018;269:293-300. doi: 10.1016/j.psychres.2018.08.068
Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry. 2010;67(11):1067-74. doi: 10.1016/j.biopsych.2009.12.012
Maciorowska M, Krzesiński P, Wierzbowski R, Gielerak G. Heart rate variability in patients with hypertension: the effect of metabolic syndrome and antihypertensive treatment. Cardiovasc Ther. 2020. doi: 10.1155/2020/8563135
Alvares GA, Quintana DS, Hickie IB, Guastella AJ. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatry Neurosci. 2016. doi: 10.1503/jpn.140217
Souza PM, Rosário NSA, Pinto KMC, Assunção PE, Oliveira FLP, Eduardo Bearzoti E. Vagal flexibility during exercise: impact of training, stress, anthropometric measures, and gender. Rehabil Res Pract. 2020: 6387839. doi: 10.1155/2020/6387839
Marasingha-Arachchige SU, Rubio-Arias JA, Alcaraz PE, Chung LH. Factors that affect heart rate variability following acute resistance exercise: A systematic review and meta-analysis. J Sport Health Sci. 2022;11(3):376-92. doi: 10.1016/j.jshs.2020.11.008
Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J. Quantitative Poincaré plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol. 2004;91(1):79-87. doi: 10.1007/s00421-003-0917-0
Michael S, Jay O, Halaki M, Graham K, Davis GM. Submaximal exercise intensity modulates acute post-exercise heart rate variability. Eur J Appl Physiol. 2016;116(4):697-706. doi: 10.1007/s00421-016-3327-9
Tulppo MP, Mäkikallio TH, Seppänen T, Airaksinen JK, Huikuri HV. Heart rate dynamics during accentuated sympathovagal interaction. Am J Physiol. 1998;274(3 Pt 2):H810-6. doi: 10.1152/ajpheart.1998.274.3.H810
Mittleman MA, Siscovick DS. Physical exertion as a trigger of myocardial infarction and sudden cardiac death. Cardiology Clinics. 1996;14(2):263-70. doi: 10.1016/s0733-8651(05)70279-4
Albert CM, Mattana J. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343(19):1355-61. doi: 10.1056/NEJM200011093431902
Buch AN, Coote JH, Townend JN. Mortality, cardiac vagal control and physical training--what's the link? Exp Physiol. 2002;87(4):423-35. doi: 10.1111/j.1469-445x.2002.tb00055.x
Billman GE. Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. J Appl Physiol. 2002;92(2):446-54. doi: 10.1152/japplphysiol.00874.2001
Kamath MV, Fallen EL, McKelvie R. Effects of steady state exercise on the power spectrum of heart rate variability. Med Sci Sports Exerc. 1991;23(4):428-34.
Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol. 1991;71(3):1136-42. doi: 10.1152/jappl.1991.71.3.1136
Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271(1 Pt 2):H244-52. doi: 10.1152/ajpheart.1996.271.1.H244
Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J. Quantitative Poincare plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol. 2004;91(1):79-87. doi: 10.1007/s00421-003-0917-0
Kiviniemi AM, Hautala AJ, Mäkikallio TH, Seppänen T, Huikuri HV, Tulppo MP. Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R-R interval. Eur J Appl Physiol. 2006;96(6):686-92. doi: 10.1007/s00421-005-0130-4
Nascimento EMF, Kiss MAPD, Santos TM, Lambert M, Pires FO. Determination of lactate thresholds in maximal running test by heart rate variability data set. Asian Journal of Sports Medicine. 2017;8(3). doi: 10.5812/asjsm.58480
Nascimento EMF, Antunes D, Salvador PCN, Borszcz FK, Lucas RD. Applicability of Dmax method on heart rate variability to estimate the lactate thresholds in male runners. J Sports Med. 2019. doi: 10.1155/2019/2075371
Scherer M, Martinek J, Mayr W. HRV (Heart Rate Variability) as a non-invasive measurement method for performance diagnostics and training control. Curr Dir Biomed Eng. 2019;5(1):97-100. doi: 10.1515/cdbme-2019-0025
Downloads
Arquivos adicionais
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Perciliany Martins de Souza, Cássia Regina Vieira Araújo, Izabela Mocaiber, Carlos Eduardo Nórte, Lenice Kappes Becker, Gabriela Guerra Leal Souza
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).