Mecanismos moleculares associados í hipertrofia e hipotrofia muscular: relação com a prática do exercício físico
DOI:
https://doi.org/10.33233/rbfe.v16i2.972Resumo
As células (fibras) musculares estriadas esqueléticas são altamente especializadas, podendo apresentar uma alta capacidade de adaptação morfológica, resultando, entre outras adaptações, em hipertrofia e hipotrofia muscular. Considerando que os processos de hipertrofia e hipotrofia muscular estão diretamente relacionados ao turnover proteico muscular, é importante destacar que as vias de síntese e degradação proteica ocorridas nesta célula são estimuladas por diversos sinais extracelulares controlados, destacando-se a prática do exercício físico agudo e crônico. Em linhas gerais, a hipertrofia muscular está relacionada com as seguintes vias de sinalização: Akt/mTOR (mammalian Target of Rapamycin) e regulação das AMPK (adenosine mono phosphate/AMP-activated protein kinase); ativação das células satélites; calcineurina/NFAT (Nuclear Factor of Activated T cells); regulação da miostatina. A hipotrofia muscular relaciona-se com as vias: sinalização das catepsinas ou lisossomais; calpaínas dependentes de cálcio (Ca2+); caspases; ubiquitina proteassoma ATP-dependente (UPS); FoxO (Forkhead box O); TNFα (Tumor Necrosis Factor-α); NFkB (Nuclear Factor kappa-B); glicocorticoides. Sendo assim, o objetivo deste estudo de revisão é elucidar estas vias envolvidas nos processos de hipertrofia e hipotrofia muscular, relacionando-as com os diversos tipos de exercício e treinamento físico.
Palavras-chave: treinamento físico, vias de sinalização, células satélites, miostatina.Â
Referências
Fernandes T, Soci UPR, Alves CR, Carmo EC, Barros JG, Oliveira EM. Determinantes moleculares da hipertrofia do músculo esquelético mediados pelo treinamento fÃsico: Estudo de vias de sinalização. Revista Mackenzie de Educação FÃsica e Esporte 2008; 7(1):169-188.
Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol, Cell Physiol 2004;287(4):834-43.
Kandarian SC, Jackman RW. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 2006;33(2):155-65.
Kandarian SC, Stevenson EJ. Molecular events in skeletal muscle during disuse atrophy. Exerc Sport Sci Rev 2002;30(3):111-6.
Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 1975;7(3):185-98.
Denny-Brown D. Experimental studies pertaining to hypertrophy hypertrophy, regeneration and degeneration. Neuromuscular Disorders 1961;38:147-196.
Goldspink NM. The combined effects of exercise and reduced food intake on skeletal muscle fibers. J Cell Comp Physiol 1964;63:209-16.
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007;129:1261-74.
Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011;24(1):1-4.
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253:905-9.
Jung CH, Ro SH, Cao J, Otto NM, Kim DH. Mtor regulation of autophagy. FEBS Lett 2010;584(7):1287-95.
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011;12:21-35.
Watson K, Baar K. mTOR and the health benefits of exercise. Semin Cell Dev Biol 2014; 36:130-9.
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2011;1(3):1383-412.
Athersos PJ, Barbra J, Smith J, Singh M, Renne J, Wackerhage H. Selective activation of AMPK-PGG-lalpha or PKB-TSC2-mTOR signaling can explain adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 2005;19:786-8.
Apró W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC, Blomstrand E. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab 2015;308(6):E470-81.
Vissing K, McGee S, Farup J, Kjølhede T, Vendelbo M, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs. endurance exercise in training-accustomed individuals. Scand J Med Sci Sports 2013;23(3):355-66.
Foschini RMSA, Ramalho FS, Bicas HEA. Células satélites musculares. Arq Bras Oftalmol 2004;67(4):681-7.
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9(2):493-5.
Allen DL, Roy RR, Edgerton VR. Myonuclear domains in muscle adaptation and disease. Muscle Nerve 1999;22:1350-60.
Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001;91( 2):534-51.
Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 2001;267(1):107-14.
Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 2000;11:1859-74.
Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 2005;288(2):R345-53.
Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, van Loon LJ. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci 2009;64(3):332-9.
Pierine DT, Nicola M, Oliveira EP. Sarcopenia: alterações metabólicas e consequências no envelhecimento. RBCM 2009;17(3):96-103.
Vega RB, Bassel-Duby R, Olson EN. Control of cardiac growth and function by calcineurin signaling. J Biol Chem 2003;278(39):36981-4.
Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010;1-8.
Hudson MB, Price SR. Calcineurin: a poorly understood regulator of muscle mass. Int J Biochem Cell Biol 2013;45(10):2173-8.
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997;387:83-90.
Argilés JM, Orpà M, Busquets S, López-Soriano FJ. Myostatin: more than just a regulator of muscle mass. Drug Discov Today 2012;17(13-14):702-9
McFarlane C, Langley B, Thomas M, Hennebry A, Plummer E, Nicholas G et al. Proteolytic processing of myostatin is auto-regulated during myogenesis. Dev Biol 2005;283(1):58-69.
McMahon CD, Popovic L, Jeanplong F, Oldham JM, Kirk SP, Osepchook CC, et al. Sexual dimorphism is associated with decreased expression of processed myostatin in males. Am J Physiol Endocrinol Metab 2003;284(2):E377-81.
Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol. 2004;20:61-86.
Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004;350(26):2682-8.
Leal ML, Santos AR, Aoki MS. Adaptações moleculares ao treinamento de força: recentes descobertas sobre o papel da miostatina. Revista Mackenzie de Educação FÃsica e Esporte 2008;7(1):161-7.
Tsuchida K. Activins, myostatin and related TGF-beta family members as novel therapeutic targets for endocrine, metabolic and immune disorders. Curr Drug Targets Immune Endocr Metabol Disord 2004;4(2):157-166.
Kollias HD, Perry RL, Miyake T, Aziz A, McDermott JC. Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 2006;26(16):6248-60
Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2011;2(3):143-151.
Pugh JK, Faulkner SH, Jackson AP, King JA, Nimmo MA. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle. Physiol Rep 2015;3(4):E12364.
Santos AR, Lamas L, Ugrinowitsch C, Tricoli V, Miyabara EH, Soares AG, Aoki MS. Different resistance-training regimens evoked a similar increase in myostatin inhibitors expression. Int J Sports Med 2015;36(9):761-8.
Baar K, Nader G, Bodine S. Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays in Biochem 2006;42:61-74.
Zhao J, Brault JJ, Schild A, Goldberg AL. Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 2008;4(3):378-80.
Lees SJ, Franks PD, Spangenburg EE, Williams JH. Glycogen and glycogen phosphorylase associated with sarcoplasmic reticulum: effects of fatiguing activity. J Appl Physiol 2001;91:1638-44.
Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003;83:731-801.
Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 2011;21:601-36.
Vermaelen M, Sivebt P, Raynaud P, Astier C, Mercier J, Lacampagne A, Cazorla O. Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy. Am J Physiol Cell Physiol 2007;292(6):C1723-31.
Sakamaki K, Satou Y. Caspases: evolutionary aspects of their functions in vertebrates. J Fish Biol 2009;74(4):727-53.
Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999;6:1028-42.
Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9:358-61.
Lippens S, Kockx M, Knaapen M, Mortier L, Polakowska R, Verheyen A et al. Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 2000;7:1218-24.
Du J, Wang X, Meireles C, Bailet JL, Debigare R, Zheng B et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004;113(1):115-23.
Thomas SS, Mitch WE. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin. Clin Exp Nephrol 2013;17(2):174-82.
Sanchez AM, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014;71(9):1657-71.
McLoughlin TJ, Smith SM, DeLong AD, Wang H, Unterman TG, Esser KA. FoxO1 induces apoptosis in skeletal myotubes in a DNA-binding-dependent manner. Am J Physiol Cell Physiol 2009;297(3):C548-55.
McClung JM, Kavazis AN, Whidden MA, DeRuisseau KC Falk DJ, Criswell DS et al. Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB–Akt) signaling. J Physiol 2007;585(1): 203–215.
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. FoxO Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell 2004;117(3):399–412.
Kanzleiter T, Rath M, Görgens SW, Jensen J, Tangen DS, Kolnes AJ, Kolnes KJ, Lee S, Eckel J, Schürmann A, Eckardt K. The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 2014;450(2):1089-94.
Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 2013;43(1):12-21
Peterson JM, Bakkar N, Guttridge DC. NF-κB signaling in skeletal muscle health and disease. Curr Top Dev Biol 2011;96:85–119.
Cai D, Frantz JD, Tawa NE, Jr Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004;119:285–98.
Dogra C, Changotra H, Wedhas N, Qin X, Wergedal JE, Kumar A. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J 2007;21:1857-69.
Mourkioti F, Kratsios P, Luedde T, Song YH, Delafontaine P, Adami R, Parente V, Bottinelli R, Pasparakis M, Rosenthal N. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 2006;116(11):2945-54.
Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, Kumar A. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 2012;32:1248-59.
Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, et al.The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 2007;6:376-85.
Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J. Endocrin 2008;197:1-10.
Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 2013;6(1):25-39.
Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 2011;13:170-82.
Hayasaka M, Tsunekawa H, Yoshinaga M, Murakami T. Endurance exercise induces REDD1 expression and transiently decreases mTORC1 signaling in rat skeletal muscle. Physiol Rep 2014;2(12):E12254.
Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 2008;295: E785-97.
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).