O exercí­cio fí­sico e a regeneração muscular

Autores

  • Viviane Balisardo Minamoto UMP

DOI:

https://doi.org/10.33233/fb.v7i1.1890

Resumo

Um dos mais importantes avanços no tratamento das lesões musculoesqueléticas provém da compreensão de que o iní­cio rápido da atividade pode promover a recuperação da função, enquanto o tratamento desta com repouso prolongado poderá retardar a recuperação, desfavorecendo a regeneração muscular. Esta revisão objetiva estabelecer os mecanismos envolvidos na regeneração muscular e apresentar resultados de estudos relacionados ao efeito da mobilização no tratamento das lesões musculares. Os estudos apresentados recomendam a prática do exercí­cio fí­sico para auxiliar o processo de regeneração muscular, embora algumas variáveis como tempo de iní­cio, duração, intensidade e tipo de exercí­cio devam ser alvos de pesquisas futuras. Palavras-chave: lesão muscular, mobilização, imobilização, regeneração.

Biografia do Autor

Viviane Balisardo Minamoto, UMP

D.Sc., Docente do Programa de Pós-Graduação em Fisioterapia da Universidade Metodista de Piracicaba

Referências

Kasemkijwattana C, Menetrey J, Somogyi G, Moreland M, Fu F, Buranapanitkit B, et al. Development of approaches to improve the healing following muscle contusion. Cell Transplant 1998;7:585-98. 2. Buckwalter J. Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J 1995;15:29-42. 3. Chambers RL, McDermott JC. Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 1996;21:155-84. 4. Marsh DR, Criiswell DS, Carson JA, Booth FW. Myogenic regulatory factors during regeneration of skeletal muscle in yong, adult and old rats. J Appl Physiol 1997;83(4):1270-5. 5. Chargé S, Rudnicki M. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004;84:209-38. 6. Leech SJ. Review of muscle healing. New Zealand Journal of Physiotherapy 1997;25:15-8. 7. Cantini M, Massimino M, Bruson A, Catani C, Libera L, Carraro U. Macrophages regulate proliferation and differentiation of satellite cells. Biochem Biophys Res Commun 1994;202:168896. 8. Sverzult A, Chimmelli L. O papel das células satélite nas respostas adaptativas do tecido muscular esquelético. Rev Fisioter Univ São Paulo 1999;6:132-9. 9. Grounds MD. Towards understanding skeletal muscle regeneration. Pathol Res Pract 1991;187:1-22. 10. Robertson T, Male M, Grounds M, Papadimitriou M. The role of macrophages in skeletal muscle regeneration with particular referebce to chemotaxis. Exp Cell Res 1993;207:321-31. 11. Mauro A. Satellite cell of skeletal muscle ï¬ bers J Cell Biol 1961;9:493-5.

Foschini R, Ramalho F, Bicas H. Células satélites musculares. Arq Bras Oftalmol 2004;67(4):681-7. 13. Järvinen T, Kääriäinen M, Järvinen M. Muscle strain injuries. Curr Opin Rheumatol 2000;12:155-61. 14. Kaunhanen S, Salmi A, Boguslawski K, Asko-Seljavaara S, Leivo I. Satellite cell proliferation, reinnervation and revascularization in human free microvascular muscle fl aps. J Surg Res 2003;115(2):191-9. 15. Lefauchier J, Sébille A. The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 1995;5:501-9. 16. Kannus P, Jozsa L, Kvist M, Järvinen T, Järvinen M. Effects of immobilization and subsequent low- and high-intensity exercise on morphology of rat calf muscles. Scand J Med Sci Sports 1998;8:160-71. 17. Appell J. Muscular atrophy following immobilization: a review. Sports Med 1990;10:42-58. 18. Lehto M, Järvinen M. Muscle injuries, their healing process and treatment. Ann Chir Gynaecol 1991;80:102-8. 19. Venojärvi M, Kvist M, Atalay M, Jozsa L, Kalimo H. Recovery from immobilization: responses of fast-twitch muscle ï¬ bres to spontaneous and intensive exercise in rat calf muscles. Pathophysiology 2004;11:17-22. 20. Knight K. Guidelines for rehabilitation of sports injuries. Clin Sports Med 1985;4:405-16. 21. Järvinen M, Lehto M. The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med 1993;15(2):78-89. 22. Sayers S, Clarkson P, Lee J. Activity and immobilization after eccentric exercise: I. Recovery of muscle function. Med Sci Sports Exerc 2000;32(9):1587-92. 23. Saxton J, Donnelly A. Light concentric exercise during recovery from exercise-induced muscle damage. Int J Sports Med 1995;16(6):347-51. 24. Sorichter S, Koller A, Haid C, Wicke K, Judmaier W, Werner P, et al. Ligth concentric exercise and heavy eccentric muscle loading: effects on CK, MRI and markers of infl ammation. Int J Sports Med 1995;16:288-92. 25. Donnelly A, Clarkson P, Maughan R. Exercise-induced muscle damage: effects of light exercise on damaged muscle. Eur J Appl Physiol 1992;64:350-3. 26. Chen T. Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity. Eur J Appl Physiol 2003;89:115-21. 27. Clarkson P, Nosaka K, Braun B. Muscle function after exerciseinduced muscle damage and rapid adaptation. Med Sci Sports Exerc 1992;24:512-20. 28. McHugh M, Connolly D, Eston R, Gleim G. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med 1999;27:157-70. 29. Lehto M, Duance V, Restall D. Collagen and ï¬ bronectin in a healing skeletal muscle injury: an immunohistological study of the effects of physical activity on the repair of injuried gastrocnemius muscle in the rat. J Bone Joint Surg 1985;67(5):820-8. 30. Clancy S, Clarkson P. Immobilization during recovery from eccentric exercise-induced muscle damage. Med Sci Sports Exerc 1990;22:S37. 31. Gregory T, Heckmann R, Francis R. The effect of exercise on the presence of leukocytes and collagen ï¬ bers in skeletal muscle after contusion. J Manipulative Physiol Ther 1995;18:72-8.

Downloads

Publicado

2018-03-20