Locomoção humana sob a perspectiva dos sistemas dinâmicos: teoria e implicações clí­nicas

Autores

  • Kênia Kiefer Parreira de Menezes UFMG
  • Diego Xavier Leite UFMG
  • Patrick Roberto Avelino UFMG

DOI:

https://doi.org/10.33233/fb.v21i4.2866

Palavras-chave:

locomoção, teoria de sistemas

Resumo

Resumo

A locomoção é uma função humana básica que permite ao indivíduo explorar seu ambiente e executar ações apropriadas. A locomoção também pode ser vista do ponto de vista energético, como uma forma de dissipar energia dentro de um sistema termodinâmico. Tradicionalmente, o controle da locomoção tem sido estudado sob a perspectiva de redes neuronais no sistema nervoso central. Abordagens mais recentes têm tentado fornecer uma visão diferenciada para o controle motor, como a abordagem dos Sistemas Dinâmicos ou Teoria dos Padrões Dinâmicos. Portanto, o objetivo do presente estudo foi revisar os princípios teóricos da aplicação da abordagem dos sistemas dinâmicos para o entendimento da locomoção humana e discutir as implicações práticas dessa abordagem para a área da reabilitação. A abordagem dos Sistemas Dinâmicos é uma teoria que assume a importância dos vários subsistemas do organismo humano, que seriam controlados pelas leis dinâmicas da física. De forma geral, seria um sistema de auto-organização que busca estratégias mais eficazes de acordo com os recursos disponíveis e as limitações impostas pelo ambiente. Através dessa linha de raciocínio, podemos interpretar como acontece o processo de locomoção humana, seus padrões de ocorrência e ainda aplicá-la para a marcha de populações especiais, como paralisia cerebral, acidente vascular encefálico, dor lombar, dentre outros.

Biografia do Autor

Kênia Kiefer Parreira de Menezes, UFMG

D.Sc., Programa de Pós-graduação em Ciências da Reabilitação, Escola de Educação Fí­sica, Fisioterapia e Terapia Ocupacional (EEFFTO), Belo Horizonte, MG, Brasil

Diego Xavier Leite, UFMG

M.Sc., Programa de Pós-graduação em Ciências da Reabilitação, Escola de Educação Fí­sica, Fisioterapia e Terapia Ocupacional (EEFFTO), Belo Horizonte, MG, Brasil

Patrick Roberto Avelino, UFMG

Ft., Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Referências

Warren Junior W. Visually controlled locomotion: 40 years later. Ecological Psychology 1998;10:177-219. doi: 10.1207/s15326969eco103&4_3

Holt K, Obusek J, Fonseca S. Constraints on disordered locomotion: A dynamical systems perspective on spastic cerebral palsy. Hum Mov Sci 1996;15:177-202. doi: 10.1016/0167-9457(95)00043-7

Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol 2003;114:1379-89. doi: 10.1016/s1388-2457(03)00120-2

Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev 2008;57:13-21. doi: 10.1016/j.brainresrev.2007.07.015

Ivanenko Y, Poppele R, Lacquaniti F. Motor control programs and walking. Neuroscientist 2006;12:339-48. doi: 10.1177/1073858406287987

Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 2010;121:1655-8. doi: 10.1016/j.clinph.2010.01.039

van de Crommert H, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 1998;7:251-63. doi: 10.1016/s0966-6362(98)00010-1

Duysens J, van de Crommert H. Neural control of locomotion; Part 1: The central pattern generator from cats to humans. Gait Posture 1998;7:131-41. doi: 10.1016/s0966-6362(97)00042-8

Brown T. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond 1911;84:308-19. doi: 10.1098/rspb.1911.0077

Grillner S, Zangger P. The effect of dorsal root transection on the efferent motor pattern in the cat's hindlimb during locomotion. Acta Physiol Scand 1984;120:393-405. doi: 10.1111/j.1748-1716.1984.tb07400.x

Shik M, Orlovsky G, Severin F. Locomotion of the mesencephalic cat elicited by stimulation of the pyramids. Biophysics 1968;13:143-52.

Bussel B, Roby-Brami A, Rémi NO, Yakovleff A. Evidence for a spinal stepping generator in man. Paraplegia 1996;34:91-92.

Bussel B, Roby-Brami A, Azouvi A, Biraben A, Yakovleff A, Held J. Myoclonus in a patient with a spinal cord transection. Possible involvement of the spinal stepping generator. Brain 1988;111:1235-45. doi: 10.1093/brain/111.5.1235

Turvey M, Fitch H, Tuller B. The Bernstein perspective I: The problems of degrees of freedom and context-conditioned variability. In: Hilssdale N, ed. Human motor behavior: An introduction. 1ª ed. New Jersey: Lawrence Erlbaum; 1982. p. 239-52.

Kelso J, Schöner G. Self-organization of coordinative movement patterns. Hum Mov Sci 1988;7:27-46. doi: 10.1016/0167-9457(88)90003-6

Kelso J, Holt K, Rubin P, Kugler P. Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: Theory and data. J Mot Behav 1981;13:226-61.

Scholz J. Dynamic Pattern Theory - Some implications for therapeutics. Phys Ther 1990;70:827-43. doi: 10.1093/ptj/70.12.827

Holt, K, Hamill J, Andres R. The force-driven harmonic oscillator as a model for human locomotion. Hum Mov Sci 1990;9:55-68. doi: 10.1016/0167-9457(90)90035-C

Fonseca S, Holt K, Saltzman E, Fetters L. A dynamical model of locomotion in spastic hemiplegic cerebral palsy: Influence of walking speed. Clin Biomech (Bristol, Avon) 2001;16:793-805. doi: 10.1016/s0268-0033(01)00067-5

Lee M, Kilbreath S, Singh M, Zeman B, Lord S, Raymond J, Davis G. Comparison of effect of aerobic cycle training and progressive resistance training on walking ability after stroke: a randomized sham exercise-controlled study. J Am Geriatr Soc 2008;56:976-85. doi: 10.1111/j.1532-5415.2008.01707.x

Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S et.al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011;90:137-49. doi: 10.1097/PHM.0b013e318201741e

Kirkwood R, Moreira B, Vallone M, Mingoti S, Dias R, Sampaio R. Step length appears to be a strong discriminant gait parameter for elderly females highly concerned about falls: a cross-sectional observational study. Physiother 2012;97:126-31. doi: 10.1016/j.physio.2010.08.007

Scianni A, Teixeira-Salmela L, Ada L. Effect of strengthening exercise in addition to task-specific gait training after stroke: a randomised trial. Int J Stroke 2010;5:329-35. doi: 10.1111/j.1747-4949.2010.00449.x

Knikou M. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast 2012;2012:1-13.

Rhea C, Wutzke C, Lewek M. Gait dynamics following variable and constant speed gait training in individuals with chronic stroke. Gait Post 2012;36:332-4. doi: 10.1016/j.gaitpost.2012.03.014

Hamill J, van Emmerik R, Heiderscheit B, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech (Bristol, Avon) 1999;14:297-308. doi: 10.1016/s0268-0033(98)90092-4

Ho C, Holt K, Saltzman E, Wagenaar R. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy. Phys Ther 2006;86:987-1000.

Holt K, Fonseca S, Obusek J. Dynamic and thermodynamic constraints and the metabolic cost of locomotion. In: Sparrow W. Energetics of human activity. 1ª ed. Champaign: Human Kinetics; 2000. p. 255-85.

Obusek J, Holt K, Rosenstein R. The hybrid mass-spring pendulum model of human leg swinging: stiffness in the control of cycle period. Biol Cybern 1995;73:139-47. doi: 10.1007/BF00204052

Holt K. Constraints in the emergence of preferred locomotory patterns. In: Rosenbaum DA, Collyer C. Timing of Behavior: Neural, psychological, and computational perspectives. 1ª ed. Cambridge: MIT Press; 1998. p. 261-91.

Holt K, Saltzman E, Ho C, Kubo M, Ulrich B. Discovery of the pendulum and spring dynamics in the early stages of walking. J Mot Behav 2006;38:206-18. doi: 10.3200/JMBR.38.3.206-218

Holt K, Saltzman E, Ho C, Ulrich B. Scaling of dynamics in the earliest stages of walking. Phys Ther 2007;87:1458-67. doi: 10.2522/ptj.20060299

Vaughan CL, Langerak NG, O´Malley MJ. Neuromaturation of human locomotion revealed by non-dimensional scaling. Exp Brain Res 2003;153:123-7. doi: 10.1007/s00221-003-1635-x

Turvey M. Coordination. Am Psychol 1990;45:938-53.

Wagenaar R, van Emmerik R. Dynamics of pathological gait. Hum Mov Sci 1994;13:441-71.

van Emmerik R, Wagenaar R. Effects of walking velocity on relative phase dynamics in the trunk in human walking. J Biomechanics 1996;29:1175-84. doi: 10.1016/0021-9290(95)00128-x

Lamoth C, Beek P, Meijer O. Pelvis-thorax coordination in the transverse plane during gait. Gait Posture 2002;16:101-14. doi: 10.1016/s0966-6362(01)00146-1

Lamontagne A, Serres SJ, Fung J, Paquet N. Stroke affects the coordination and stabilization of head, thorax and pélvis during voluntary horizontal head motions performed in walking. Clin Neurophysiol 2005;116:101-11. doi: 10.1016/j.clinph.2004.07.027

Stephenson JL, Lamontagne A, De Serres SJ. The coordination of upper and lower limb movements during gait in healthy and stroke individuals. Gait Post 2009;29:11-16. https://di.org/10.1016/j.gaitpost.2008.05.013

Meyns P, Gestel LV, Bruijin SM, Desloovere K, Swinnen SP, Duysens J. Is interlimb coordination during walking preserved in children with cerebral palsy? Res Dev Disabil 2012;33:1418-28. doi: 10.1016/j.ridd.2012.03.020

Lamoth CJC, Meijer OG, Wuisman PIJM, Dieën JH, Levin MF, Beek PJ. Pelvis- Thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine 2002;27:E92-99.

Hreljac A. Effects of physical characteristics on the gait transition speed during human locomotion. Hum Mov Sci 1995;14:205-16. doi: 10.1016/0167-9457(95)00017-M

Cavagna GA, Heglund NC, Taylor CR. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 1977;233:R243-261. doi: 10.1152/ajpregu.1977.233.5.R243

Fonseca S, Holt K, Fetters L, Saltzman E. Dynamical resources used in ambulation by children with spastic hemiplegic cerebral palsy: Relationship to kinematics, energetics, and asymmetries. Phys Ther 2004;84:344-54. doi: 10.1093/ptj/84.4.344

Diedrich FJ, Warren Junior W. Why change gaits? Dynamics of the walk-run transition. J Exp Psychol Hum Percept Perform 1995;21:183-202. doi: 10.1037//0096-1523.21.1.183

Jeng SF, Holt KG, Fetters L, Certo C. Self-optimization of walking in nondisabled children and children with spastic hemiplegic cerebral palsy. J Mot Behav 1996;28:15-27. doi: 10.1080/00222895.1996.9941729

Skrotzky K. Gait analysis in cerebral palsied and nonhandicapped children. Arch Phys Med Rehabil 1983;64:291-5.

Lamoth CJC, Daffertshofer A, Meijer OG, Moseley GL, Wuisman PIJM, Beek PJ. Effects of experimentally induced pain and fear of pain on trunk coordination and back muscle activity during walking. Clin Biomech (Bristol, Avon) 2004;19:551-63. doi: 10.1016/j.clinbiomech.2003.10.006

Downloads

Publicado

2020-08-08