Efeito do laser em baixa intensidade sobre a proliferação de osteoblastos cultivados em modelo de simulação de infecção
DOI:
https://doi.org/10.33233/fb.v14i3.393Resumo
A destruição tecidual associada aos quadros de osteomielite está relacionada aos constituintes e aos produtos dos microorganismos infectantes e í ativação de células do próprio tecido e do sistema imunológico. O lipopolissacarídeo (LPS), componente da parede de bactérias gram-negativas, é um potente indutor de reabsorção óssea. Por outro lado, o laser em baixa intensidade (LBI) tem sido utilizado em tecidos ósseos com o intuito de acelerar o processo de reparo. Este estudo avaliou os efeitos do LBI sobre a proliferação de osteoblastos cultivados em situação de simulação de infecção. Para tanto, osteoblastos da linhagem OSTEO-1 (derivados de calvária de ratos), cultivados na presença LPS (E.coli), foram irradiados com LBI (Ga-Al-As, 780 nm, 10 mW, 12s, 0,12 J, 3 J/cm2) e submetidos a ensaios de proliferação em períodos de 1, 3 e 5 dias (MTT). Os resultados não mostraram diferenças estatisticamente significantes entre os grupos em relação í proliferação celular. Nos parâmetros e períodos avaliados, o LPS e o LBI não foram capazes de alterar a proliferação de osteoblastos cultivados em situação de simulação de infecção, sugerindo que outros tipos celulares devem estar envolvidos nos processos de reabsorção e de reparo ósseo ligados a infecções e a utilização do LBI.
Palavras-chave: osteomielite, terapia a laser de baixa intensidade, osteoblastos.Â
Referências
Deller-Quinn M, Perinpanayagam, H. Osteoblast expression of cytokines is altered on MTA surfaces. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108(2):302-7.
Jung WK, Park IS, Park SJ, YEA SS, Choi YH, Oh S, Park SG, Choi IW. The 15-deoxy-Delta12,14-prostaglandin J2 inhibits LPS-stimulated AKT and NF-kappaB activation and suppresses interleukin-6 in osteoblast-like cells MC3T3E-1. Life Sci 2009;85(1-2):46-53.
Hausmann E, Raisz LG, Miller WA. Endotoxin: stimulation of bone resorption in tissue culture. Science 1970;168:862-4.
Nair SP, Meghji S, Wilson M, Reddi K, White P, Henderson B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 1996;64(7):2371-80.
Katono T, Kawato T, Tanabe N, Tanakab H, Suzuki N, Kitami S, Morita T, Motohashi M, Maeno M. Effects of nicotine and lipopolysaccharide on the expression of matrix metalloproteinases, plasminogen activators, and their inhibitors in human osteoblasts. Arch Oral Biol 2009;54(2):146-55.
Martinez MEM, Pinheiro AL, Ramalho LM. Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 2008;23(3):313-7.
Nicola RA, Jorgetti V, Rigau J, Pacheco MT, dos Reis LM, Zângaro RA. Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 2003;18(2):89-94.
Takeda Y. Irradiation effect of low-energy laser on alveolar bone after tooth extraction: experimental study in rats. Int J Oral Maxillofac Surg 1988;17(6):388-91.
Carrillo JS, Calatavud J, Manso FJ, Barberia E, Martinez JM, Donado M. A randomized double-blind clinical trial on the effectiveness of helium-neon laser in the prevention of pain, swelling and trismus after removal of impacted third molars. Int Dent J 1990;40(1):31-6.
Fernando S, Hill CM, Walker R. A randomised double blind comparative study of low level laser therapy following surgical extraction of lower third molar teeth. Br J Oral Maxillofac Surg 1993;31(3):170-2.
Freitas IGF, Baranauskas V, Cruz-HOâ€Fling MA. Laser effects on osteogenesis. Appl Surf Sci 2000;154-155:548-54.
Pinheiro AL, Gerbi MEM. Photobioengineering of the bone repair process. Photomed Laser Surg 2006;24(2):169-78.
Deboni NCZ. Obtenção e caracterização de linhagem de células osteoblásticas [Tese]. São Paulo: Faculdade de Odontologia da Universidade de São Paulo; 1995.
Shoji M, Tanabe N, Mitsui N, Tanaka H, Suzuki N, Takeichi O, Sugaya A, Maeno M. Lipopolysaccharide stimulates the production of prostaglandin E2 and the receptor Ep4 in osteoblasts. Life Sci 2006;78(17):2012-8.
Nogueira GT, Mesquita-Ferrari RA, Souza NH, Artilheiro PP, Albertini R, Bussadori SK, Fernandes KP. Effect of low-level laser therapy on proliferation, differentiation, and adhesion of steroid-treated osteoblasts. Lasers Med Sci 2012;27(6)1189-93.
Almeida-Lopes L, Rigau J, Zãngaro RA, Guidugli-Neto J, Jaeger MM. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 2001;29(2):179-84.
Fujihara NA. Estudo da adesão, proliferação e sÃntese de proteÃnas por osteoblastos cultivados e submetidos à ação do laser de baixa potência [Dissertação]. São Paulo: Faculdade de Odontologia da Universidade São Paulo; 2002.
Ferreira MP, Ferrari RA, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DA, Fernandes KP. Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 2009;27(6):901-6.
Teixeira VP, Ferrari RAM, Bussadori SK, Mascaro MB, Fernandes KPS. Efeito do lipopolissacarÃdeo de Escherichia coli sobre a proliferação de osteoblastos. Conscientiae Saúde 2011;10(2):210-4.
Wang LY, Wang HY, Ouyang J, Yu L, Chen B, Qin JQ, Qiu XZ. Low concentration of lipopolysaccharide acts on MC3T3-E1 osteoblasts and induces proliferation via the COX-2-independent NFkappaB pathway. Cell Biochem Funct 2009;27(4):238-42.
Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 1998;22(4):347-54.
Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 2005;26(17):3503-9.
Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 2005;23(2):161-6.
Arisu HD, Türköz E, Bala O. Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 2006;21(3):175-80.
Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP. Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 2008;26(4):401-4.
Xu M, Deng T, Mo F, Deng B, Lam W, Deng P, Zhang X, Liu S. Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 2009;27(2):309-15.
Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-orlandini S, Formigli L, Giannelli M. Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: ‘‘an in vitro study’’. Lasers Surg Med 2010;42(6):527-39.
Renno AC, Mcdonnell PA, Parizotto NA, Laakso EL. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 2007;25(4):275-80.
Saracino S, Mozzati M, Martinasso G, Pol R, Canuto RA, Muzio G. Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med 2009;41(4):298-304.
Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 2008;120(3-4):112-7.
Fujihara NA, Hiraki KR, Marques MM. Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 2006;38(4):332-6.
Petri AD, Teixeira LN, Crippa GE, Beloti MM, de Oliveira PT, Rosa AL. Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 2010;21(6):491-8.
Downloads
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.