Produtos de glicação avançada e desenvolvimento da aterosclerose

Autores

  • Elisa Batista Oliveira e Silva Universidade Federal de Alagoas (UFAL)
  • Luci Tojal e Seara Universidade Federal de Alagoas (UFAL)
  • Rose Carolinne Correia da Silva Universidade Federal de Alagoas (UFAL)

DOI:

https://doi.org/10.33233/nb.v15i4.452

Resumo

Objetivo: Esta revisão objetiva investigar a contribuição dos Produtos de Glicação Avançada (AGEs) dietéticos na aterosclerose para a otimização da dietoterapia. Metodologia: O presente estudo realizou um levantamento bibliográfico sobre estudos publicados nos bancos de dados Medline, PUBMed, Periódicos CAPES, ScienceDirect e SciELO no perí­odo de 1997 a 2015. Sí­ntese dos dados: Os AGEs dietéticos são absorvidos e se juntam aos AGEs endógenos, exercendo atividades pró-oxidantes e pró-inflamatórias, concorrendo para a inflamação, o estresse oxidativo e a lesão vascular, através do aumento da glicação de proteí­nas e da interação AGE-receptor. A glicação de lipoproteí­nas, ligações cruzadas entre AGEs e proteí­nas da parede dos vasos e o aumento da vasoconstrição estimulam o desenvolvimento da aterosclerose. Conclusão: A glicação de proteí­nas e seus produtos atuam claramente no desenvolvimento da aterosclerose. A ingestão dos AGEs dietéticos deve ser reduzida na abordagem terapêutica da aterosclerose. Alimentos submetidos a técnicas culinárias como ferver, cozinhar e ensopar devem ser preferencialmente ingeridos. Alimentos fontes de lipí­deos e proteí­nas processados a altas temperaturas são fontes de AGEs e devem ser evitados. Juntas, essas estratégias contribuem para a redução do pool de AGEs no organismo.

Palavras-chave: produtos finais de glicosilação, dieta, aterosclerose, doenças cardiovasculares.

Biografia do Autor

Elisa Batista Oliveira e Silva, Universidade Federal de Alagoas (UFAL)

Nutricionista, Mestra em Nutrição, subárea de Nutrição e Desenvolvimento Fisiológico, Universidade Federal de Alagoas (UFAL)

Luci Tojal e Seara, Universidade Federal de Alagoas (UFAL)

Nutricionista, Mestra em Ciências dos Alimentos, Faculdade de Nutrição da Universidade Federal de Alagoas (UFAL)

Rose Carolinne Correia da Silva, Universidade Federal de Alagoas (UFAL)

Nutricionista, Mestra em Nutrição, subárea de Nutrição e Desenvolvimento Fisiológico, Universidade Federal de Alagoas (UFAL)

Referências

Soares GP, Klein CH, Silva NAS, Oliveira GMM. Evolução da mortalidade por doenças do aparelho circulatório nos municípios do Estado do Rio de Janeiro, de 1979 a 2010. Arq Bras Cardiol 2015;104(5):356-65.

Sociedade Brasileira de Cardiologia. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol 2013;101(4Supl1):1-22.

Sociedade Brasileira de Cardiologia. I Diretriz sobre o Consumo de Gorduras e Saúde Cardiovascular. Arq Bras Cardiol 2013;100(1Supl3):1-40.

Monnier VM. Intervention against the Maillard reaction in vivo. Arch Biochem Biophys 2003;419(1):1-15.

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414(13):813-20.

Delgado-Andrade C. Maillard reaction products: some considerations on their health effects. Clin Chem Lab Med 2014;52(1):53-60.

Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V et al. Inflamatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci 2002;99(24):15596-601.

Kerkenia M, Weissb IS, Jaissonb S, Dandanad A, Addade F, Gilleryb P et al. Increased serum concentrations of pentosidine are related to presence and severity of coronary artery disease. Thrombosis Research 2014;134(3): 633-8.

Shibao J, Bastos DHM. Produtos da reação de Maillard em alimentos: implicações para a saúde. Rev Nutr 2011; 24(6):895-904.

Negrean M. Advanced glycation endproducts (AGE) and their role in the pathogenesis of chronic complications of diabetes mellitus. MÆDICA A journal of clinical medicine 2006;1(2):59-66.

Barbosa JHP, Oliveira SL, Seara LT. O papel dos produtos finais de glicação avançada (AGEs) no desencadeamento das complicações vasculares do diabetes. Arq Bras Endocrinol Metab 2008;52(6):940-50.

Barbosa JHP, Oliveira SL, Seara LT. Produtos da glicação avançada (AGEs) dietéticos e as complicações do diabetes. Rev Nutr 2009;22(1):113-24.

Förster A, Kühne Y, Henle T. Studies on the absorption and elimination of dietary Maillard reaction products. Ann N Y Acad Sci 2005;1043:474-81.

Goh S, Cooper ME. The role of advanced glication end products in progression and complications of diabetes. J Clin Endocrinol Metab 2008;93(4):1143-52.

Semba RD, Nicklett EJ, Ferrucci L. Does Accumulation of Advanced Glycation End Products Contribute to the Aging Phenotype? J Gerontol A Biol Sci Med Sci 2010;65A(9):963-75.

Cai W, He JC, Zhu L, Chen X, Zheng F, Striker GE et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol 2008;173(2):327-36.

Alamir I, Niquet-Leridon C, Jacolot P, Rodriguez C, Orosco M, Anton PM et al. Digestibility of extruded proteins and metabolic transit of Nε-carboxymethyllysine in rats. Amino Acids 2013; 44:1441-9.

Roncero-Ramos I, Delgado-Andrade C, Tessier FJ, Niquet-Léridon C, Strauch C, Monnier VM et al. Metabolic transit of Nε-carboxymethyl-lysine after consumption of AGEs from bread crust. Food Funct 2013;4:1032-9.

Koschinsky T, He C, Mitsuhashi T, Bucala R, Liu C, Buenting C et al. Orally absorbed reactive glycation products (glicotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 1997;94(12):6474-9.

Vasdev S, Gill V, Singal P. Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem Biophys 2007;49:48-63.

Vlassara H, Palace MR. Glycoxidation: The menace of diabetes and aging. Mt Sinai J Med 2003;70(4):232-41.

Basta G, Schmidt AM, Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004;63(4):582-92.

Basta G. Receptor for advanced glication endproducts and atherosclerosis: from basics mechanisms to clinical implications. Atherosclerosis 2008;196:9-21.

Hanssen NMJ, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JLJM et al. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 2014;35(17):1137-46.

Peppa M, Uribarri J, Vlassara H. The role of advanced glycation end products in the development of atherosclerosis. Current Diabetes Reports 2004;4:31-6.

Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving H et al. Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-causemortality in type 1 diabetes. Diabetes Care 2011;34:442-7.

Sourris KC, Lyons JG, Dougherty SL, Chand V, Straznicky NE, Schlaich MP, et al. Plasma advanced glycation end products (AGEs) and NF-κB activity are independent determinants of diastolic and pulse pressure. Clin Chem Lab Med 2014;52(1):129-38.

Huang Q, Sheng C, Liu M, Li F, Li Y, Wang J. Arterial stiffness and wave reflections in relation to plasma advanced glycation end products in a chinese population. Am J Hypertens 2013;26(6):754-61.

Ferretti G, Bacchetti T, N`Egre-Salvayre A, Salvayre R, Dousset N, Curatola G. Structural modifications of HDL and functional consequences. Atherosclerosis 2006;184:1-7.

Bengmark S, Gil A. Productos finales de la glicación y de la lipoxidación como amplificadores de la inflamación: papel de los alimentos. Nutr Hosp 2007;22(6):625-40.

Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Götting C et al. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr 2007;85:1236-43.

Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R et al. Advanced glycation end products in foods and a pratical guide to their reduction in the diet. J Am Diet Assoc 2010;110:911-6.

Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 2004;104(8):1287-91.

Assar SH, Moloney C, Lima M, Magee R, Ames JM. Determination of Nε-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 2009;36:317-26.

Chao P, Hsu C, Yin M. Analysis of glycative products in sauces and sauce-treated foods. Food Chemistry 2009;113:262-6.

Andrade KQ, Ferreira RC, Seara LT. Danos proteicos durante o processamento do leite e sua repercussão na saúde. Nutrição Brasil 2014;13(1):48-54.

Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. European Journal of Clinical Nutrition 2013;67:239-48.

Rodríguez JM, Balich LL, Concha MJ, Mizón C, Barnett DB, Acevedo GB, et al. Reduction of serum advanced glycation end-products with a low calorie Mediterranean diet. Nutr Hosp 2015;31(6):2511-7.

Liu L, Xie Y, Song Z, Shang S, Chen X. Influence of dietary flavonoids on the glycation of plasma proteins. Mol BioSyst 2012;8:2183-7.

Harsha PSCS, Lavelli V, Scarafoni A. Protective ability of phenolics from white grape vinification by-products against structural damage of bovine serum albumin induced by glycation. Food Chemistry 2014;156:220-6.

Vlassopoulos A, Lean MEJ, Combet E. Protein–phenolic interactions and inhibition of glycation – combining a systematic review and experimental models for enhanced physiological relevance. Food Funct 2014;5:2646-55.

Brown BE, Kim CHJ, Torpy FR, Bursill CA, McRobb LS, Heather AK et al. Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E_/_ mice. Atherosclerosis 2014;232:403-9.

Umadevi S, Gopi V, Elangovan V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem Biol Interact 2014;208:28-36.

Mahdavifarda S, Bathaiea SZ, Nakhjavanib M, Heidarzadeh H. L-cysteine is a potent inhibitor of protein glycation on both albumin and LDL, and prevents the diabetic complications in diabetic–atherosclerotic rat. Food Research International 2014;62:909-16.

Sadowska-Bartosz I, Bartosz G. Prevention of Protein Glycation by Natural Compounds. Molecules 2015;20:3309-34.

Mesías M, Navarro M, Martinez-Saez N, Ullate M, Castillo MD, Morales N et al. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Research International 2014;62:1120-6.

Navarro M, Fiore A, Fogliano V, Morales FJ. Carbonyl trapping and antiglycative activities of olive oil mill wastewater. Food Funct 2015;6:574-83.

Joglekar MM, Panaskar SN, Chougale AD, Kulkarni MJ, Arvindekar AU. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation. Mol BioSyst 2013;9:2463-72.

Downloads

Publicado

2016-08-28