Influência dos polifenois do chá verde na obesidade

Autores

  • Greice Carniel Furlanetto Arraes Centro Universitário Metodista - IPA
  • Cláudia Funchal Centro Universitário Metodista - IPA

DOI:

https://doi.org/10.33233/nb.v16i1.740

Resumo

Objetivo: O chá verde é rico em polifenois e sua utilização parece estar associada í  redução da gordura corporal. O objetivo do estudo foi revisar a influência dos polifenois do chá verde na obesidade. Fonte de dados: Este artigo de revisão baseou-se em artigos selecionados por sua relevância, e provenientes de bases de dados como Science Direct, Pubmed, Bireme e Portal da Capes publicados entre 1992 e 2015. A busca contemplou as seguintes palavras-chave: polifenois, Camellia sinensis, perda de peso, obesidade. Sí­ntese dos dados: O chá verde é uma bebida rica em polifenois, principalmente as catequinas, tendo como principal componente a epigalocatequina galato. Entre uma variedade de efeitos benéficos í  saúde atribuí­dos ao consumo do chá verde, grande atenção tem sido dada aos seus efeitos anti-obesidade por promover aumento da oxidação de ácidos graxos, estimulação da lipólise e melhora da termogênese. Entretanto, os mecanismos de como o chá verde atua na redução de gordura corporal não estão completamente esclarecidos. Conclusão: O chá verde, aliado a um plano alimentar equilibrado, além da prática de atividade fí­sica, pode contribuir para melhora da obesidade.

Palavras-chave: polifenois, Camellia sinensis, perda de peso, obesidade.

Biografia do Autor

Greice Carniel Furlanetto Arraes, Centro Universitário Metodista - IPA

Engenheira de Alimentos, Nutricionista, Mestranda do Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista - IPA, Porto Alegre/RS

Cláudia Funchal, Centro Universitário Metodista - IPA

D.Sc., Farmacêutica-Bioquí­mica, Mestre e Doutora em Ciências Biológicas, Docente do Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista - IPA, Porto Alegre/RS

Referências

Beja A, Ferrinho P, Craveiro I. Evolução da prevenção e combate à obesidade de crianças e jovens em Portugal ao nível do planeamento estratégico. Rev Port Saúde Pública 2014;32(1):10-7.

Rosini TC, Silva ASR, Moraes C. Obesidade induzida por consumo de dieta: modelo em roedores para o estudo dos distúrbios relacionados com a obesidade. Rev Assoc Med Bras 2012;58(3):383-7.

Federación Latinoamericana de Sociedades Obesidad (Flaso). I Consenso Latino-americano em obesidade. Rio de Janeiro; 1998.

Francischi RPP, Pereira LO, Freitas CS, Klopfer M, Santos RC, Vieira P et al. Obesidade: atualização sobre sua etiologia, morbidade e tratamento. Rev Nutr 2000;13(1):17-28.

Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Obesidade. Brasília; 2006:108 p.

Bastos DHM, Rogero MM, Arêas JA. Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. Arq Bras Endocrinol Metab 2009;53(5):646-56.

Costamagna MS, Zampini IC, Alberto MR, Cuello S, Torres S, Pérez J et al. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chemistry 2016;190:392-402.

Pimentel CVMB, Francki, VM, Gollucke APB. Alimentos funcionais: introdução às principais substâncias bioativas em alimentos. São Paulo: Varela; 2005.

Ahmad RS, Butt MS, Sultan MT, Ahmad S, De Feo SDV, Zia-Ul-Hag M. Preventive role of green tea catechins from obesity and related disorders especially hypercholesterolemia and hyperglycemia. J Transl Med 2015;13:79.

Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol. 2010;80:1771-92.

Bakker GC, Van Erk MJ, Pellis L, Wopereis S, Rubingh CM, Cnubben NH, et al. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr 2010;91:1044–59.

Wang S, Moustaid-Mouss N, Chen L, Mo H, Shastri A, Su R et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014;25:1-18.

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79:727-47.

Anhê FF, Desjardins Y, Pilon G, Dudonné S, Genovese MI, Lajolo FM et al. Polyphenols and type 2 diabetes: a prospective review. Pharma Nutrition. 2013;1:105-14.

Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med.- 1992;21:334-50.

Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML et al. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr Res 2009;29:784-93.

Cheng TO. All teas are not created equal. The Chinese green tea and cardiovascular health. Int J Cardiol 2006;108(3):301-8.

Rumpler W, Seale J, Clevidence B, Judd J, Wiley E, Yamamoto S et al. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr 2001;131(11): 2848-52.

Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 2001;131(9):2248-51.

Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 2000;71(Suppl):1698-702.

Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci 2007;81:519-33.

Kim EY, Ham SK, Shigenaga MK, Han O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J Nutr 2008;138(9):1647-51.

Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 2006;50:176-87.

USDA database for the flavonoid content of Selected foods. Nutrient Data Laboratory. Food Composition Laboratory. Beltsville Human Nutrition Research Center. Nutrient Data Laboratory. United States Department of Agriculture. [citado 2015 set 15]. Disponível em: http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/Flav/Flav02-1.pdf.

Hasler C M. Functional Foods: Benefits, Concerns and Challenges. A position paper from the American Council on Science and Health. J Nutr 2002;132(12):3772-81.

Bartels CL, Miller SJ. Dietary supplements marketed for weight loss. Nutr Clin Pract 2003;18(2):156-69.

Camargo MCR, Toledo MCF. Teor de cafeína em cafés brasileiros. Ciênc Tecnol Aliment 1998;18(4):421-4.

World Health Organization. Obesity: preventing and managing the global epidemic. [citado 2015 set 20]. Disponível em:

http://www.who.int/nutrition/publications/ obesity/WHO_TRS_894/en/. 2000.

Kopelman PG. Obesity as a medical problem. Nature 2000;404:635-43.

Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab 2004;89:2583-9.

Behbehani K. Kuwait National Programme for Healthy Living: first 5-year plan (2013– 2017). Med Princ Pract. 2014;23(suppl 1):32-42.

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277-359.

Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2012;33:26-34.

Kalupahana NS, Claycombe K, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2011;2(4):304-16.

Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY et al. Bmp4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci USA 2013;110(9): E798–807.

Arner E, Westermark PO, Spalding KL, Britton T, Rydén M, Frisén J et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105-9.

Lolmède K, Duffaut C, Zakaroff-Girard A, Bouloumié A. Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab. 2011;37:283-90.

Li ZY, Wang P, Miao CY. Adipokines in inflammation, insulin resistance and cardiovascular disease. Clin Exp Pharmacol Physiol 2011;38(12):888-96.

Chen S, Akbar SMF, Miyake T, Abe M, Al-Mahtab M, Furukawa S et al. Diminished immune response to vaccinations in obesity: role of myeloid-derived suppressor and other myeloid cells. Obes Res Clin Pract 2015;9(1):35-44.

Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes 2006;30:400-18.

Kris-Etherton PM, Etherton TD, Fleming J. Human nutrition|cardiovascular and obesity health concerns, in: Dikeman M, Devine C, eds. Encyclopedia of Meat Sciences. 2 ed. Oxford: Academic Press; 2014, p.105-10.

Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract 2014;106:627-33.

Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 2008;138:1677-83.

Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, et al. Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western- style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem. 2011;59:11862-71

Ramadan G, El-Beih NM, Abd El-Ghffar EA. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br J Nutr 2009;102:1611-9.

Sae-tan S, Grove KA, Lambert JD. Weight control and prevention of metabolic syndrome by green tea. Pharmacol Res 2011;64:146-54.

Shimotoyodome A, Haramizu S, Inaba M, Murase T, Tokimitsu I. Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med Sci Sports Exerc 2005;37:1884-92.

Tian C, Xiaolei Y, Zhang R, Long J, Ren W, Ding S et al. Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARgamma-adiponectin pathway. PloSOne 2013;8:e53796.

Ueda M, Ashida H. Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice. J Agric Food Chem 2012;60:8917-23.

Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 2012;32:421-7.

Boschmann M, Thielecke F. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr 2007;26:389S-95S.

Brown AL, Lane J, Holyoak C, Nicol B, Mayes AE, Dadd T. Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial. Br J Nutr 2011;106:1880--9.

Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR. Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr 2007;26:396S-402S.

Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P. Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr. 2008;27:363-70.

Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y et al. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr 2009;139:264-70.

Suliburska J, Bogdanski P, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients. Biol Trace Elem Res 2012;149:315-22.

Thielecke F, Rahn G, Bohnke J, Adams F, Birkenfeld AL, Jordan J et al. Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study. Eur J Clin Nutr 2010;64:704-13.

Chen IJ, Liu CY, Chiu JP, Hsu CH. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2016;35(3):592-9.

Brown AL, Lane J, Coverly J, Stocks J, Jackson S, Stephen A et al. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br J Nutr 2009;101:886-94.

Wu CH, Lu FH, Chang TS, Wang RH, Chang CJ. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res 2003;11:1088-95.

Auvichayapat P, Prapochanung M, Tunkamnerdthai O, Sripanidkulchai BO, Auvichayapat N, Thinkhamrop B et al. Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial. Physiol Behav 2008;93:486-91.

Dulloo AG, Duret C, Rohrer D, Girardier L. Efficacy of a Green tea extract rich in catechin polyphenols and caffeine in increasing 24h energy expenditure and fat oxidation in human. Am J Clin Nutr 1999;70:1040–5.

Almeida A, Fava D, Navarro F. Interação da ingestão diária de chá verde (Camellia sinensis) no metabolismo celular e na célula adiposa promovendo emagrecimento. Rev Bras de Obesid, Nutr e Emagrec 2007;1(3):27-37.

Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J. Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 1990;51:759-67.

Takeshita M, Takashima S, Harada U, Shibata E, Hosoya N, Takase H et al. Effects of long-term consumption of tea catechins-enriched beverage with no caffeine on body composition in humans. Jpn Pharmacol Ther 2008;36:767-76.

Phung O, Baker W, Matthews L, Lanosa M, Thorne A, Coleman C. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr 2010;91:73-81.

Pham NM, Nanri A, Kochi T, Kuwahara K, Tsuruoka H, Kurotani K et al. Coffee and green tea consumption is associated with insulin resistance in Japanese adults. Metabolism 2014;63:400-8.

Rebello SA, Chen CH, Naidoo N, Xu W, Lee J, Chia KS et al. Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic asian population: a crosssectional study. Nutr J 2011;10:61.

Stote KS, Baer DJ. Tea consumption may improve biomarkers of insulin sensitivity and risk factors for diabetes. J Nutr 2008;138:1584S–8S.

Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea — a review. J Am Coll Nutr 2006;25:79-99.

Ormsbee JM, Rawal SR, Baur AD, Kinsey AW, Marcus L, Elam ML et al. The effects of a multi-ingredient dietary supplement on body composition, adipokines, blood lipids, and metabolic health in overweight and obese men and women: a randomized controlled trial. J Int Soc Sports Nutr 2014;11:37.

Outlaw J, Wilborn C, Smith A, Urbina S, Hayward S, Foster C et al. Effects of ingestion of a commercially available thermogenic dietary supplement on resting energy expenditure, mood state and cardiovascular measures. J Int Soc Sport Nutr 2013;10(1):25.

Lopez HL, Ziegenfuss TN, Hofheins JE, Habowski SM, Arent SM, Weir JP et al. Eight weeks of supplementation with a multi-ingredient weight loss product enhances body composition, reduces hip and waist girth, and increases energy levels in overweight men and women. J Int Soc Sport Nutr 2013;10:22.

Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 2007;15:2571-2582.

Kim H, Hiraishi A, Tsuchiya K, Sakamoto K. Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 2010;62:245-55.

Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, et al. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/ EBPalpha in 3 T3-L1 cells. Biosci Biotechnol. Biochem 2004;68:2353-9.

Chan CY, Wei L, Castro-Muñozledo F, Koo WL. (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 2011; 89:779-85.

Chen S, Osaki N, Shimotoyodome A. Green tea catechins enhance norepinephrine induced lipolysis via a protein kinase A-dependent pathway in adipocytes. Biochem Biophys Res Commun 2015;461:1-7.

Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 2006;83(2):461S–5S.

Shen WJ, Patel S, Miyoshi H, Greenberg AS, Kraemer FB. Functional interaction of hormonesensitive lipase and perilipin in lipolysis. J Lipid Res 2009;50:2306-13.

Steinberg GR, Kemp BE, Watt MJ. Adipocyte triglyceride lipase expression in

human obesity. Am J Physiol Endocrinol Metab 2007;293(4):E958–64.

Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004;306(5700):1383-6.

Cao H. Endocrinol J. Adipocytokines in obesity and metabolic disease. J Endocrinol 2014;220(2):T47-59.

Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 1998; 273:215-21.

Wu X, He W, Yao L, Zhang H, Liu Z, Wang W et al. Characterization of binding interactions of (-)-epigallocatechin-3-gallate from green tea and lipase. J Agric Food Chem 2013;61:8829-35.

Walkowiak J, Bajerska J, Kargulewicz A, Lisowska A, Siedlerski G, Szczapa T et al. Single dose of green tea extract decreases lipid digestion and absorption from a test meal in humans. Acta Biochim Pol 2013;60:481-3.

Basu A, Betts NM, Mulugeta A, Tong C, Newman E, Lyons TJ. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutr Res 2013;33:180-7.

Snoussi C, Ducroc R, Hamdaoui MH, Dhaouadi K, Abaidi H, Cluzeaud F et al. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. J Nutr Biochem 2014;25:557-64.

Cao H, Hininger-Favier I, Kelly MA, Benaraba R, Dawson HD, Coves S, et al. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J Agric Food Chem 2007;55:6372-8.

Nishiumi S, Bessyo H, Kubo M, Aoki Y, Tanaka A, Yoshida K-I et al. Green and black tea suppress hyperglycemia and insulin resistance by retaining the expression of glucose transporter 4 in muscle of high-fat diet-fed C57BL/6J mice. J Agric Food Chem 2010;58:12916-23.

Santana A, Santamarina A, Souza G, Mennitti L, Okuda M, Venancio D et al. Decaffeinated green tea extract rich in epigallocatechin-3-gallate improves insulin resistance and metabolic profiles in normolipidic diet - but not high-fat diet-fed mice. J Agric Food Chem 2015;26:893-902.

Mallat Z, Heymes C, Ohan J, Faggin E, Lesèche G, Tedgui A. Expression of interleukin-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol 1999;19:611-6.

Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab 2012;23:407-15.

Chatzigeorgiou A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity related adipose tissue inflammation. Diabetologia 2012;55:2583-92.

Molina N, Bolin AP, Otton R. Green tea polyphenols change the profile of inflammatory cytokine release from lymphocytes of obese and lean rats and protect against oxidative damage. Int Immunopharmacol 2015;28(2):985-96.

Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocyte: Is beige the new brown? Genes Dev 2013;27:234-50.

Saen-tan S, Rogers CJ, Lambert J. Decaffeinated green tea and voluntary exercise induce gene changes related to beige adipocyte formation in high fat-fed obese mice. J Funct Foods 2015;14:210-4.

Downloads

Publicado

2017-02-11