Acute effect of the blood flow resistance training on metabolic demand of lactate in young soccer players
DOI:
https://doi.org/10.33233/rbfe.v18i3.3239Keywords:
athletic performance; biomarkers; hypoxiaAbstract
Blood flow restriction resistance training (TF) and low-loads enables strength gains similar to those of traditional high-load TF, which can be an interesting training strategy for young soccer players. However, it is not clear whether these methods are equivalent in terms of magnitude of metabolic demand. Thus, the objective of this study was to identify the metabolic intensity response via La- level analysis, in a session of two different types of Strength Training (TF) applied to young soccer players. Eighteen soccer athletes U-20 underwent a strength training session in two intervention models: The group TF with blood flow restriction (GRF=9) and traditional TF group (GTT n=9). The GRF underwent 4 sets of 15 repetitions at 20% 1RM and 80% blood flow restriction in the squat exercise. The GTT performed 6 sets of 10 repetitions at 80% of 1RM in the squat exercise. Before and after the training session, venous blood samples were collected and afterwards the blood lactate concentrations were measured. Friedman's nonparametric test analyzed the pre and post-training moments, as well as between groups. There was a significant increase in La- levels after training, regardless of the method applied (GRF: 1,8 ± 0,4 vs 9,8 ± 1,6 mM/dL; GTT: 1,8 ± 0,5 vs 9,6 ± 1,1 mM/dL; p≤0.05 for both), and no difference between groups (p > 0,05). The two resistance training models promote similar increases in blood lactate concentrations in under-20 soccer players.
References
Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med 2005;35(6):501-36. doi: 10.2165/00007256-200535060-00004
Sporis G, Jukic I, Ostojic SM, Milanovic D. Fitness profiling in soccer: physical and physiologic characteristics of elite players. J Strength Cond Res 2009;23(7):1947-53. doi: 10.1519/JSC.0b013e3181b3e141
Varley M, Aughey R. Acceleration profiles in elite Australian soccer. Int J Sports Med 2013;34(1):282-7. doi: 10.1055/s-0032-1331776
Bangsbo J, Krustrup P, Gonzalez-Alonso J, Saltin B. ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise. Am J Physiol Endocrinol Metab 2001;280(6):956-64. doi: 10.1152/ajpendo.2001.280.6.E956
Ferrari HG, Oliveira R, Strapasson MV, Santa Cruz RAR, Libardi CA, Cavaglieri CR. Efeito de diferentes métodos de recuperação sobre a remoção de lactato e desempenho anaeróbio de futebolistas. Rev Bras Med Esporte 2013;19(6):423-6.
Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc 2006;38(6):1165-74. doi: 10.1249/01.mss.0000222845.89262.cd
Krustrup P, Zebis M, Jensen JM, Mohr M. Game-induced fatigue patterns in elite female soccer. J Strenght Cond Res 2010:24(2):437-41. doi: 10.1519/JSC.0b013e3181c09b79
Maughan R, Gleeson M, Greenhaff PL. Bioquímica do exercício e do treinamento. Barueri: Manole; 2000.
Pope ZK, Willardson JM, Schoenfeld BJ. Exercise and blood flow restriction. J Strength Cond Res 2013;27(10): 2914-26. doi: 10.1519/JSC.0b013e3182874721
Santos GB. Lactate: From villain to hero. Rev Bras Nutr Func 2019;42(77):23-30.
Powers SK, Howley ET. Fisiologia do Exercício: teoria e aplicação ao condicionamento e ao desempenho. 8 ed. Barueri: Manole; 2014.
Castro FMP, Aquino R, Berti Junior JA, Gonçalves LGC, Puggina EF. Strength training with vascular occlusion: a review of possible adaptive mechanisms. Human Movement 2017;18(2):3-14.
Mohr M, Krustrup P, Bangsbo J. Match Performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci 2003;21(7):519-28. doi: 10.1080/0264041031000071182
Mohr M, Draganidis D, Chatzinikolaou A, Barbero-Álvarez JC, Castagna C, Douroudos I et al. Muscle damage, inflammatory, immune and performance responses to three soccer games in 1 week in competitive male players. Eur J Appl Physiol 2016;116(1):179-93. doi: 10.1007/s00421-015-3245-2
Bezerra JA, Farias NO, Melo SVA, Silva RPM, Castro ACM, Martins FSB et al. Respostas de indicadores fisiológicos a um jogo de futebol. Rev Bras Med Esporte 2016;22(3):200-6. doi: 10.1590/1517-869220162203137068
Angelini C. Limb-girdle muscular dystrophies: heterogeneity of clinical phenotypes and pathogenetic mechanisms. Acta Myol 2004;23(3):130-6.
McMillan K, Helgerud J, Grant S J, Newell J, Wilson J, MacDonald R et al. Lactate threshold responses to a season of professional British youth soccer. Br J Sports Med 2005;39(7):432-6. doi: 10.1136/bjsm.2004.012260
Ramsbottom R, Williams C, Fleming N, Nute ML. Training induced physiological and metabolic changes associated with improvements in running performance. Br J Sports Med 1989;23:171-6. doi: 10.1136/bjsm.23.3.171
Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol Occup Physiol 1994;68(2):155-61. doi: 10.1007/bf00244029
Goto K, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 2005;37(6):955-63.
Reeves G, Kraemer R, Hollander D, Clavier J, Thomas C, Francois M et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol 2006;101(6):1616-22. doi: 10.1152/japplphysiol.00440.2006
Pierce J, Clark B, Ploutz-Snyder L, Kanaley J. Growth hormone and muscle function response to skeletal muscle ischemia. J Appl Physiol 2006;101(6):1588-95. doi: 10.1152/japplphysiol.00585.2006
Fujita S, Abe T, Drummond M, Cadenas J, Dreyer H, Sato Y et al. Blood flow restriction during lowintensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903-10. doi: 10.1152/japplphysiol.00195.2007
Baechle TR, Earle RW. Essentials of strength training and conditioning, Champaign: Human Kinetics; 2000.
Ritti-Dias RM, Avelar A, Menêses AL, Salvador EP, Pereira DA Silva DR et al. Segurança, reprodutibilidade, fatores intervenientes e aplicabilidade de testes de 1-RM. Motriz 2013;19(1):231-42.
Laurentino G, Ugrinowitsch C, Aihara AY, Fernandes AR, Parcell AC, Ricard M et al. Effects of strength training and vascular occlusion. Int J Sport Med 2008;29(8):664-7. doi: 10.1055/s-2007-989405
Rodríguez-Rosell D, Mora-Custodio R Franco-Márquez F, Yáñez-García JM González-Badillo JJ. Traditional vs. sport specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 2017;31(1):196-206. doi: 10.1519/JSC.0000000000001476
Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S et al. A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol Occup Physiol 1995;70(5):379-86. doi: 10.1007/bf00618487
Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Sportscience 2005;9:6-13. Disponível em: http://sportsci.org/jour/05/ambwgh.htm. PMID: 19114737
Hopkins WG. A spreadsheet for analysis of straightforward controlled trials. Sportscience 2003. [citado 2019 Ago 10]. Disponível em: http://sportsci.org/resource/stats/generalize.html#calculate
Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009;41(1):3-13. doi: 10.1249/MSS.0b013e31818cb278
Marcelino R, Pasquarelli BN, Sampaio J. Inferência baseada em magnitudes na investigação em ciências do esporte. A necessidade de romper com os testes de hipótese nula e os valores de p. Rev Bras Educ Fís Esporte 2017. Disponível em: https://arxiv.org/ftp/arxiv/papers/1802/1802.02972.pdf
Yasuda T, Fukumura K, Iida H, Nakajima T. Effect of low-load resistance exercise with and without blood flow restriction to volitional fatigue on muscle swelling. Eur J Appl Physiol 2015;115(5):919-26. doi: 10.1007/s00421-014-3073-9
Khajehlandi M, Janbozorgi M. Effect of one session of resistance training with and without blood flow restriction on serum levels of creatine kinase and lactate dehydrogenase in female athletes. J Clin Basic Res 2018;2(2):5-10. doi: 10.29252/jcbr.2.2.5
Yasuda T, Abe T, Brechue WF, Iida H, Takano H, Meguro K et al. Venous blood gas and metabolite response to low intensity muscle contractions with external limb compression. Metabolism 2010;59(10):1510-9. doi: 10.1016/j.metabol.2010.01.016
Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 2002;81(Suppl 11):S52-69. doi: 10.1097/00002060-200211001-00007
Lamb GD, Stephenson DG. Point: Counterpoint. Lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 2006;100(4):1410-4. doi: 10.1152/japplphysiol.00023.2006
Eston R, Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci 1999;17(3):231-8. doi: 10.1080/026404199366136
Karabulut M, Bemben DA, Sherk VD, Anderson MA, Abe T, Bemben MG. Effects of high-intensity resistance training and low-intensity resistance training with vascular restriction on bone markers in older men. Eur J Appl Physiol 2011;111(8):1659-67. doi: 10.1007/s00421-010-1796-9
Yasuda T, Ogasawara R, Sakamaki M, Bemben MG, Abe T. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow restricted low-intensity resistance training. Clin Physiol Funct Imaging 2011;31(5):347-51. doi: 10.1111/j.1475-097X.2011.01022.x
Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 1992;64(6):552-6. doi: 10.1007/BF00843767
Halestrap AP, Meredith D. The SLC16 gene family - from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004;447(5):619-28. doi: 10.1007/s00424-003-1067-2
Loenneke JP, Kim D, Fahs CA, Thiebaud RS, Abe T, Larson RD et al. The influence of exercise load with and without different levels of blood flow restriction on acute changes in muscle thickness and lactate. Clin Physiol Funct Imaging 2017;37(6):734-40. doi: 10.1111/cpf.12367
Ozaki H, Loenneke JP, Buckner SL, Abe T. Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Med Hypotheses 2016;88:22-6. doi: 10.1016/j.mehy.2015.12.026
Clanton TL, Klawitter PF. Invited review: adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. J Appl Physiol 2001;90(6):2476-87. doi: 10.1152/jappl.2001.90.6.2476
Lindholm M, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol 2016;101(1):28-32. doi: 10.1113/EP085318
Published
Issue
Section
License
Copyright (c) 2019 Ezequias Pereira-Neto, Ragami Chaves Alves, Tácito Pessoa Souza Júnior, Leandro Henrique Albuquerque Brandão, Marzo Edir Da Silva-Grigoletto, Marcos Bezerra de Almeida
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms: Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License which allows the sharing of work with acknowledgment of authorship and initial publication in this magazine; Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal; Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and citation of published work (See The Effect of Open Access).