Bases metabólicas do crescimento muscular
DOI:
https://doi.org/10.33233/rbfe.v9i1.3468Abstract
O músculo esquelético é o maior tecido do corpo e guarda relação com a autonomia somatocinética e homeostase metabólica. A miogênese é decorrente da predominância de fatores protéicos miogênicos sobre miostáticos. O crescimento ocorre predominantemente de forma hipertrófica, após o nascimento, pelo predomínio da síntese sobre o catabolismo protéico. A síntese protéica é finamente mantida por cascata de quinases controladas ou controladoras da mTOR. A mTOR controla o complexo iniciador da síntese protéica, sendo influenciada pela contração muscular, fatores de crescimento e a leucina. O estado de privação energética (↑ AMP/ATP) inibe a mTOR pelo aumento da AMPK. A síntese protéica miofibrilar é estimulada por fatores hidratantes celulares (glicose, insulina, creatina, BCAA, glutamina). Seguindo-se a lesão e necrose miofibrilar, há resposta inflamatória e ação dos fagócitos, promovendo a fagocitose tecidual. Posteriormente, os macrófagos alteram seu fenótipo para resolver a inflamação e promover a miogênese e crescimento miofibrilar.
Palavras-chave: músculo esquelético, hipertrofia muscular, anabolismo protéico, mTOR, regeneração muscular.
References
Robergs RA, Roberts SO. Função neuromuscular e adaptação ao exercÃcio. In: PrincÃpios fundamentais de fisiologia do exercÃcio para adaptação, desempenho e saúde. 1ª ed. São Paulo: Phorte; 2002. p.76-109.
Nair KS. Aging muscle. Am J Clin Nutr 2005;81:953-63.
Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 2008;294:E43-51.
Leger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 2006;576:923-33.
Welle S, Bhatt K, Thornton CA. Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. J Appl Physiol 1999;86:1220-5.
Witard OC, Tieland M, Beelen M, Tipton KD, van Loon LJ, Koopman R. Resistance exercise increases postprandial muscle protein synthesis in humans. Med Sci Sports Exerc 2009;41:144-54.
Mitchell JW, Nadel ER, Stolwijk JA. Respiratory weight losses during exercise. J Appl Physiol 1972;32:474-6.
Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr 2001;131:856S-860S.
Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151-71.
Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 2002;93:1168-80.
Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007;282:20329-39.
Proud CG. Amino acids and mTOR signalling in anabolic function. Biochem Soc Trans 2007;35:1187-90.
Pruznak AM, Kazi AA, Frost RA, Vary TC, Lang CH. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside prevents leucine-stimulated protein synthesis in rat skeletal muscle. J Nutr 2008;138:1887-94.
Lang CH, Frost RA, Jefferson LS, Kimball SR, Vary TC. Endotoxin-induced decrease in muscle protein synthesis is associated with changes in eIF2B, eIF4E, and IGF-I. Am J Physiol Endocrinol Metab 2000;278:E1133-43.
Svanberg E, Frost RA, Lang CH, Isgaard J, Jefferson LS, Kimball, et al. IGF-I/IGFBP-3 binary complex modulates sepsis-induced inhibition of protein synthesis in skeletal muscle. Am J Physiol Endocrinol Metab 2000;279:E1145-58.
Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 2008;412:179-90.
American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009;41:687-708.
Roth SM, Ferrell RE, Peters DG, Metter EJ, Hurley BF, Rogers MA. Influence of age, sex, and strength training on human muscle gene expression determined by microarray. Physiol Genomics 2002;10:181-90.
Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med (Maywood) 2003;228:706-9.
Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 1997;273:E99-107.
MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol 1995;20:480-6.
Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979;58:115-30.
Phillips SM. Short-term training: when do repeated bouts of resistance exercise become training? Can J Appl Physiol 2000;25:185-93.
Miyazaki M, Noguchi M, Takemasa T. Intermittent reloading attenuates muscle atrophy through modulating Akt/mTOR pathway. Med Sci Sports Exerc 2008;40:848-55.
Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 1997;273:E122-9.
Fujita S, Dreyer HC, Drummond MJ, Micah J, Glynn EL. Nutrient signaling in the regulation of human muscle protein synthesis. J Physiol 2007;582:813-23.
Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005;35:339-61.
Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 2005;280:7570-80.
Roth E. Skeletal muscle gain: how much can be achieved by protein and amino acid administration? Curr Opin Clin Nutr Metab Care 2008;11:32-3.
Drummond MJ, Rasmussen BB. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 2008;11:222-6.
Rieu I, Balage M, Sornet C, et al. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol 2006;575:305-15.
Rivas DA, Lessard SJ, Yaspelkis BB, Hawley JA. Regulation of mTORC 1/2 formation in response to a high- fat diet and exercise training. Med Sci Sports Exerc 2008;40(5):S3-S4.
Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 2006;21:48-60.
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasques DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-26.
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002;277:23977-80.
Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 2006;576:613-24.
Koopman R, Zorenc AH, Gransier RJ, Cameron-Smith D, van Loon LJ. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 2006;290:E1245-52.
Chazaud B, Brigitte M, Yacoub-Youssef H, Arnold L, Gherardi R, Sonnet C et al. Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc Sport Sci Rev 2009;37:18-22.
Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004;76:509-13.
Arnold L, Henry A, Poron F, van Rooijen N, Plonquet A, Gherardi RK et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007;204:1057-69.
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-64.
Li YP. TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 2003;285:C370-6.
Lefaucheur JP, Gjata B, Lafont H, Sebille A. Angiogenic and inflammatory responses following skeletal muscle injury are altered by immune neutralization of endogenous basic fibroblast growth factor, insulin-like growth factor-1 and transforming growth factor-beta 1. J Neuroimmunol 1996;70:37-44.
Bondesen BA, Mills ST, Pavlath GK. The COX-2 pathway regulates growth of atrophied muscle via multiple mechanisms. Am J Physiol Cell Physiol 2006;290:C1651-9.
Shen W, Li Y, Zhu J, Schwendener R, Huard J. Interaction between macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury. J Cell Physiol 2008;214:405-12.
Boppart MD, Liu J, Alexander NM, Kaufman SJ. The alpha7beta1 integrin recruits a Sca-1+/CD45- stem cell population in skeletal muscle following exercise-induced injury. Med Sci Sports Exerc 2008;40(5):S33.
Moore NA, Devaney JM, Hoffman E, Zambraski E, Gordish H, Clarkson PM. Association of Akt2 genotypes and exercise muscle damage. Med Sci Sports Exerc 2008;40(5):S32.
Washington TA, Davis JM, Lowe LL, Wilson LB, Durstine JL, Carson JA. Interleukin-6 deficiency attenuates the recovery of gastrocnemius muscle mass from disuse-induced atrophy. Med Sci Sports Exerc 2008;40(5).
Carey AL, Bruce CR, Sacchetti M, Anderson MJ, Olsen DB, Saltin B, et al. Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with Type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 2004;47:1029-37.
Pedersen BK, Fischer CP. Beneficial health effects of exercise--the role of IL-6 as a myokine. Trends Pharmacol Sci 2007;28:152-6.
Mehan RS, Allen DL, Uyenishi J, Cleary A, Lindsay SF, Reed JM. Transcriptional regulation of interleukin-6 expression in mouse skeletal muscle in vivo and in myotubes in viitro. Med Sci Sports Exerc 2008;40(5):S163-S164.
Downloads
Published
Issue
Section
License
Authors who publish in this journal agree to the following terms: Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License which allows the sharing of work with acknowledgment of authorship and initial publication in this magazine; Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal; Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and citation of published work (See The Effect of Open Access).