Is there a benefit in unifying the concepts of sarcopenia and dynapenia in patients with sarcopenic obesity elective for bariatric surgery? A conceptual review
DOI:
https://doi.org/10.33233/rbfex.v21i4.5379Keywords:
obesity, dynapenia, sarcopenia, bariatric surgeryAbstract
Introduction: Sarcopenic obesity is a growing condition globally, which can affect not only the elderly population but also the young population, leading to a reduction in quality of life and predisposing the development of other comorbidities. Methods: The present literature review revisited the conceptual formation of sarcopenia and dynapenia, investigated the physiological mechanisms of sarcopenic obesity, exploring the benefits of bariatric surgery in this context. Results: The available evidence of improvement in muscle strength even with a decrease in the amount of lean mass in patients undergoing bariatric surgery exposes the scarcity of studies regarding the association of metabolic factors with decreased muscle strength. Conclusion: The reliability of the use of the terms dynapenia and sarcopenia as a cause-effect relationship is questioned and further studies are needed.
References
Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC, et al. Obesity, metabolic syndrome, and musculoskeletal disease: Common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol 2018;9. doi: 0.3389/fphys.2018.00112
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing 2019;48:16–31. doi: 10.1093/ageing/afy169
Ciudin A, Simó-Servat A, Palmas F, Barahona MJ. Sarcopenic obesity: a new challenge in the clinical practice. Endocrinol Diabetes Nutr 2020;10:672-81. doi: 10.1016/j.endinu.2020.03.004
Barazzoni R, Bischoff S, Boirie Y, Busetto L, Cederholm T, Dicker D, et al. Sarcopenic obesity: time to meet the challenge. Clin Nutr 2018 (6 Pt A):1787-93. doi: 10.1016/j.clnu.2018.04.018
Coral RV, Bigolin AV, Machry MC, Menguer RK, Pereira-Lima JC, Contin I, et al. Improvement in muscle strength and metabolic parameters despite muscle mass loss in the initial six months after bariatric surgery. Obes Surg 2021;31(10):4485-91. doi: 10.1007/s11695-021-05634-0
Buzza AFB, Machado CA, Pontes F, Sampaio LG, Contador JS, Sampaio CL, et al. Prevalence of sarcopenia in women at stable weight phase after Roux-en-Y gastric bypass. Arch Endocrinol Metab 2022:2359-3997000000494. doi: 10.20945/2359-3997000000494
Clark BC, Manini TM. Functional consequences of sarcopenia and dynapenia in the elderly. Curr Opin Clin Nutr Metab Care 2010;13(3):271-6. doi: 10.1097/MCO.0b013e328337819e
Dynapenia S, Clark BC, Manini TM. Sarcopenia 6 ¼ Dynapenia. J Gerontol [Internet] 2008 [citado 28 jan 2022];63(8):829-34. Disponível em: http://www.insideoutsidespa.com/archive/Clark_Sarcopenia_Dynapenia.pdf
Delmonico MJ, Beck DT. The current understanding of sarcopenia: Emerging tools and interventional possibilities. Am J Lifestyle Med 2017;11:167-81. doi: 10.1177/1559827615594343
Chao YP, Fang WH, Chen WL, Peng TC, Yang WS, Kao TW. Exploring muscle health deterioration and its determinants among community-dwelling older adults. Front Nutr 2022;9. doi: 10.3389/fnut.2022.817044
Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sport Med 2006;36(2):133-49. doi: 10.2165/00007256-200636020-00004
Kamen G. Aging, resistance training, and motor unit discharge behavior. Can J Appl Physiol 2005;30(3):341-51. doi: 10.1139/h05-126
Clark BC, Manini TM, Bolanowski SJ, Ploutz-Snyder LL. Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy. J Appl Physiol 2006;101(1):264-72. doi: 10.1152/japplphysiol.01402.2005
Lexell J. Evidence for nervous system degeneration with advancing age. J Nutr 1997;127:1011-3. doi: 10.1093/jn/127.5.1011S
Kido A, Tanaka N, Stein RB. Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol 2004;82(4):238-48. doi: 10.1139/y04-017
Delbono O. Neural control of aging skeletal muscle. Aging Cell 2003;2(1):21-9. doi: 10.1046/j.1474-9728.2003.00011.x
Kwon YN, Yoon SS, Lee KH. Sarcopenic obesity in elderly Korean women: A nationwide cross-sectional study. J Bone Metab 2018;25(1):53-8. doi: 10.11005/jbm.2018.25.1.53
Donini LM, Busetto L, Bauer JM, Bischoff S, Boirie Y, Cederholm T, et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr 2020 39(8):2368-88. doi: 10.1016/j.clnu.2019.11.024
Scott D, Chandrasekara SD, Laslett LL, Cicuttini F, Ebeling PR, Jones G. Associations of sarcopenic obesity and dynapenic obesity with bone mineral density and incident fractures over 5-10 years in community-dwelling older adults. Calcif Tissue Int 2016;99(1):30-42. doi: 10.1007/s00223-016-0123-9
Rossi AP, Bianchi L, Volpato S, Bandinelli S, Guralnik J, Zamboni M, et al. Dynapenic abdominal obesity as a predictor of worsening disability, hospitalization, and mortality in older adults: results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 2017;72(8):1098-104. doi: 10.1093/gerona/glw203
Batsis JA, Zbehlik AJ, Pidgeon D, Bartels SJ. Dynapenic obesity and the effect on long-term physical function and quality of life: Data from the osteoarthritis initiative physical functioning, physical health and activity. BMC Geriatr 2015;15(1). doi: 10.1186/s12877-015-0118-9
Akhmedov D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol 2013;4:1-12. doi: 10.3389/fphys.2013.00371
Hoy D, Geere JA, Davatchi F, Meggitt B, Barrero LH. A time for action: Opportunities for preventing the growing burden and disability from musculoskeletal conditions in low- and middleincome countries. Best Pract Res Clin Rheumatol 2014;28(3):377-93. doi: 10.1016/j.berh.2014.07.006
McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res 2015;116(6):1022-33. doi: 10.1161/CIRCRESAHA.116.303697
Tilley BJ, Cook JL, Docking SI, Gaida JE. Is higher serum cholesterol associated with altered tendon structure or tendon pain? A systematic review. Br J Sports Med. 2015;49(23):1504-9. doi: 10.1136/bjsports-2015-095100
Farnaghi S, Prasadam I, Cai G, Friis T, Du Z, Crawford R, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterolinduced osteoarthritis. FASEB J 2017;31(1):356-67. doi: 10.1096/fj.201600600R
Makovey J, Chen JS, Hayward C, Williams FMK, Sambrook PN. Association between serum cholesterol and bone mineral density. Bone 2009;44(2):208-13. doi: 10.1016/j.bone.2008.09.020
Karalaki M, Fili S, Philippou A, Koutsilieris M. Muscle regeneration: Cellular and molecular events. In Vivo (Brooklyn) [Internet] 2009 [citado 21 jan 2022];23(5):779-96. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19779115/
Pattanakuhar S, Pongchaidecha A, Chattipakorn N, Chattipakorn SC. The effect of exercise on skeletal muscle fibre type distribution in obesity: From cellular levels to clinical application. Obes Res Clin Pract 2017;11(5):112-32. doi: 10.1016/j.orcp.2016.09.012
D’Souza DM, Trajcevski KE, Al-Sajee D, Wang DC, Thomas M, Anderson JE, et al. Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiol Rep 2015;3(8):1-12. doi: 10.14814/phy2.12506
Meng J, Bencze M, Asfahani R, Muntoni F, Morgan JE. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells. Skelet Muscle 2015;5(1):1-12. doi: 10.1186/s13395-015-0036-8
Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010;298(5). doi: 10.1152/ajpregu.00735.2009
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 2011;1(1):1-20. doi: 10.1186/2044-5040-1-21
Pauleau G, Goin G, Goudard Y, De La Villeon B, Brardjanian S, Balandraud P. Influence of age on sleeve gastrectomy results. J Laparoendosc Adv Surg Tech 2018;28(7):827-32. doi: 10.1089/lap.2017.0696
Gil S, Kirwan JP, Murai IH, Dantas WS, Merege-Filho CAA, Ghosh S, et al. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. J Cachexia Sarcopenia Muscle 2021;12(6):1440-55. doi: 10.1002/jcsm.12815
Voican CS, Lebrun A, Maitre S, Lainas P, Lamouri K, Njike-Nakseu M, et al. Predictive score of sarcopenia occurrence one year after bariatric surgery in severely obese patients. PLoS One 2018;13(5):1-12. doi: 10.1371/journal.pone.0197248
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Luji Iseki Takenami, Ana Maria Sales Gomes Filha, Eric Simas Bomfim, Laura Souza Lagares, Rodrigo Colares de Macedo, Luis Alberto Bastos de Almeida, Clarcson Plácido Conceição dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms: Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License which allows the sharing of work with acknowledgment of authorship and initial publication in this magazine; Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal; Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and citation of published work (See The Effect of Open Access).