Comparison between direct measurement of waist-hip ratio and indirect estimation by the InBody S10 device

Authors

DOI:

https://doi.org/10.33233/rbfex.v21i5.5403

Keywords:

heart disease risk factors, body composition, waist-hip ratio

Abstract

Introduction: The waist-hip ratio (WHR), calculated with the division between waist and hip measurements, is considered an important tool for checking the risk of developing cardiovascular diseases. The measuring tape, regarded as the gold standard tool for assessing WHR, is accessible and easy to use. However, there are other tools capable of estimating WHR values, such as the InBody S10 bioimpedance analyzer. This study aimed to compare the WHR value estimated by the InBody S10 device with the values measured with the measuring tape. Methods: 98 healthy young subjects (23.9 ± 5.77 years, 68.9 ± 12.67 kg, 1.69 ± 0.1 cm) had their waist and hip measurements directly assed with a measuring tape and indirectly estimated by the InBody S10 device. The intraclass correlation coefficient (ICC) and standard error of measurements (SEM) were used to verify reliability. The Pearson correlation coefficient and Bland-Altman tests were applied to compare the evaluation methods. Statistical significance was set at p < 0.05. Results: The InBody S10 device showed low SEM levels (0.03). However, the InBody S10 significantly overestimated the WHR values (p < 0.05). Furthermore, the methods showed a low intra-class correlation between repetitions (ICC = 0.24) and a low correlation between them (r= 0.26). Conclusion: The InBody S10 device did not display valid values for estimating the waist-hip ratio. Therefore, it may not be accurate enough for this estimation in healthy young people.

Author Biographies

Cirley Pinheiro Ferreira, UFPI

Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Rede Nordeste de Biotecnologia (RENORBIO), Maceió, AL, Brasil

Felipe Machado Brito, UFPI

Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Brasil

Valmir Oliveira Silvino, UFPI

Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Rede Nordeste de Biotecnologia (RENORBIO), Maceió, AL, Brasil

Layne Lins Rodrigues da Silva, UFPI

Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Brasil

Crislane de Moura Costa, UFPI

Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Brasil

Marcos Antônio Pereira dos Santos, UFPI

Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Rede Nordeste de Biotecnologia (RENORBIO), Maceió, AL, Brasil

References

Rodríguez-Guerrero E, Romero-Saldaña M, Fernández-Carbonell A, Molina-Luque R, Molina-Recio G. New simplified diagnostic decision trees for the detention of metabolic syndrome in the elderly. Int J Environ Res Public Health. 2020;17(14):5191. doi: 10.3390/ijerph17145191

Fauziana R, Jeyagurunathan A, Abdin E, Vaingankar J, Sagayadevan V, Shafie S, et al. Body mass index, waist-hip ratio and risk of chronic medical condition in the elderly population: results from the Well-being of the Singapore Elderly (WiSE) Study. BMC Geriatr. 2016;16(1):125. doi: 10.1186/s12877-016-0297-z

Veghari G, Salehi A, Vaghari M. The comparison of waist circumference, waist-to-hip ratio, and waist-to-height ratio among rural women adults in the North of Iran, between the years 2004 and 2013. ARYA Atheroscler. 2018;14(4). doi: 10.22122/arya.v14i4.1518

Srikanthan P, Seeman TE, Karlamangla AS. Waist-hip-ratio as a predictor of all-cause mortality in high-functioning older adults. Ann Epidemiol. 2009;19(10):724-31. doi: 10.1016/j.annepidem.2009.05.003

Staiano A, Reeder B, Elliott S, Joffres M, Pahwa P, Kirkland S, et al. Body mass index versus waist circumference as predictors of mortality in Canadian adults. Int J Obes. 2012;36(11):1450-4. doi: 10.1038/ijo.2011.268

Després JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126(10):1301-13. doi: 10.1161/CIRCULATIONAHA.111.067264

Liu ZH, Zhang GX, Zhang H, Jiang L, Deng Y, Chan FS, Fan JK. Association of body fat distribution and metabolic syndrome with the occurrence of colorectal adenoma: A case‐control study. J Dig Dis. 2021;22(4):222-9. doi: 10.1111/1751-2980.12979

Cornier MA, Després JP, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124(18):1996–2019. doi: 10.1161/CIR.0b013e318233bc6a

Ling CHY, Meskers CGM, Maier AB. Can anthropometric measures be used as proxies for body composition and physical function in geriatric outpatients? Arch Gerontol Geriatr. 2021;94:104379. doi: 10.1016/j.clnu.2011.04.001

Chen CH, Chen YY, Chuang CL, Chiang LM, Chiao SM, Hsieh KC. The study of anthropometric estimates in the visceral fat of healthy individuals. Nutr J. 2014;13(1):46. doi: 10.1186/1475-2891-13-46

Gadekar T, Dudeja P, Basu I, Vashisht S, Mukherji S. Correlation of visceral body fat with waist–hip ratio, waist circumference and body mass index in healthy adults: A cross sectional study. Med J Armed Forces India. 2020;76(1):41–6. doi: 10.1016/j.mjafi.2017.12.001

Paz LSC, Couto AV. Avaliação nutricional em pacientes críticos: revisão de literatura. BRASPEN J [Internet]. 2016 [cited 2022 Jan 24];31(3):269-77. Available from: http://www.braspen.com.br/home/wp-content/uploads/2016/11/16-Avalia%C3%A7%C3%A3o-nutri-em-pacentes-criticos.pdf

Jayanama K, Putadechakun S, Srisuwarn P, Vallibhakara SA, Chattranukulchai SP, Sritara C, et al. Evaluation of body composition in hemodialysis Thai patients: comparison between two models of bioelectrical impedance analyzer and Dual-Energy X-Ray Absorptiometry. Journal of Nutrition and Metabolism. 2018; 2018:1-11. doi: 10.1155/2018/4537623

Cuppari L. Nutrição clínica no adulto. 2. ed. Barueri: Manole; 2005.

Fonseca PCA, Carvalho CA, Machado SP, Sousa AG. Obesidade central e doenças não transmissíveis em servidores idosos de uma universidade federal. Geriatria & Gerontologia [Internet]. 2012 [cited 2022 Ago 10];6(4):332-40. Available from: http://ggaging.com/details/174/pt-BR/obesidade-central-e-doencas-nao-transmissiveis-em-servidores-idosos-de-uma-universidade-federal

Kyle UG, Bosaeus I, Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clinical Nutrition. 2004;23(6):1430-53. doi: 10.1016/j.clnu.2004.09.012

Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. Surv Ophthalmol. 2002;47(6):598. doi: 10.1016/S0039-6257(02)00362-4

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet [Internet]. 1986 [cited 2022 Ago 12];327(8476):307–10. Available from: https://pubmed.ncbi.nlm.nih.gov/2868172/

Saadati HM, Sabour S, Mansournia MA, Mehrabi Y, Nazari SS. O efeito direto do índice de massa corporal nos resultados cardiovasculares entre participantes sem obesidade central pela estimativa por máxima verossimilhança direcionada. Arq Bras Cardiol 2021;116(5):879-86. doi: 10.36660/abc.20200231

Zhang FL, Ren JX, Zhang P, Jin H, Qu Y, Yu Y, et al. Strong association of Waist Circumference (WC), Body Mass Index (BMI), Waist-to-Height Ratio (WHtR), and Waist-to-Hip Ratio (WHR) with diabetes: a population-based cross-sectional study in Jilin Province, China. J Diabetes Res. 2021:8812431. doi: 10.1155/2021/8812431

Brenner DR, Tepylo K, Eny KM, Cahill LE, El-sohemy A. Comparison of body mass index and waist circumference as predictors of cardiometabolic health in a population of young Canadian adults. Diabetology & Metabolic Syndrome. 2010;2(1):28. doi: 10.1186/1758-5996-2-28

Rocha JS, Ogando BM, Reis VM, Ávila WR, Carneiro AG, Gabriel RE, et al. Impacto de um programa de exercício físico na adiposidade e na condição muscular de mulheres pós-menopáusicas. Rev Bras Ginecol Obst. 2012;34(9). doi: 10.1590/s0100-72032012000900005

Ling CH, Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, et al. Maier AB. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clinical Nutrition. 2011;30(5):610-5. doi: 10.1016/j.clnu.2011.04.001

Esco MR, Snarr RL, Leatherwood MD, Chamberlain NA, Redding ML, Flatt AA, et al. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J Strength Cond Res 2015;29(4):918-25. doi: 10.1519/jsc.0000000000000732

Fürstenberg A, Davenport A. Comparison of multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry assessments in outpatient hemodialysis patients. Am J Kidney Dis 2011;57(1):123-9. doi: 10.1053/j.ajkd.2010.05.022

Fürstenberg A, Davenport A. Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy X-Ray absorptiometry. Am J Nephrol. 2011b;33(2):150-6. doi: 10.1159/000324111

Kriemler S, Puder J, Zahner L, Roth R, Braun-Fahrländer C, Bedogni G. Cross-validation of bioelectrical impedance analysis for the assessment of body composition in a representative sample of 6- to 13-year-old children. Eur J Clin Nutr. 2008;63(5):619-26. doi: 10.1038/ejcn.2008.19

Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, Cheon GJ. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatrics International. 2009;51(2):263-8. doi: 10.1111/j.1442-200x.2008.02698.x

Ogawa H, Fujitani K, Tsujinaka T, Imanishi K, Shirataka H, Kantani A, et al. InBody 720 as a new method of evaluating visceral obesity. Hepatogastroenterology [Internet]. 2011 [cited 2022 Jan 25];58(105):42-4. Available from: https://pubmed.ncbi.nlm.nih.gov/21510284/

Bedogni G, Malavolti M, Severi S, Poli M, Mussi C, Fantuzzi A, Battistini N. Accuracy of an eight-point tactile-electrode impedance method in the assessment of total body water. Eur J Clin Nutr. 2002;56(11):1143-8. doi: 10.1038/sj.ejcn.1601466

Sartorio A, Malavolti M, Agosti F, Marinone PG, Caiti O, Battistini N, et al. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr. 2004;59(2):155-60. doi: 10.1038/sj.ejcn.1602049

Demura S, Sato S, Kitabayashi T. Percentage of total body fat as estimated by three automatic bioelectrical impedance analyzers. J Physiol Anthropol Appl Hum Sci. 2004;23(3):93-9. doi: 10.2114/jpa.23.93

Eisenmann JC, Heelan KA, Welk GJ. Assessing body composition among 3- to 8-year-old children: anthropometry, bia and dxa. Obes Res. 2004;12(10):1633-40. doi: 10.1038/oby.2004.203

Faria ER, Gontijo CA, Franceschini SCC, Sylvia CC, Peluzio MCG, Priore SE. Body composition and risk for metabolic alterations in female adolescents. Rev Paul Pediatr. 2014;32(2):207-15. doi: 10.1590/0103-0582201432215313

Silva FVM, Almonfrey FB, Freitas CMN, Fonte FK, Sepulvida MBC, Almada-Filho CM, et al. Associação da composição corporal com rigidez arterial em longevos. Arq Bras Cardiol 2021;457-62. doi: 10.36660/abc.20190774

Published

2023-03-27