Estereologia e morfometria do tecido muscular-esquelético de animais submetidos a um programa de treinamento de força e suplementação de creatina durante 9 semanas

Autores/as

  • Victor Augusto Ramos Fernandes FMJ
  • Felipe Lovaglio Belozo Faculdade Network
  • Marcelo Conte ESEF
  • Eduardo José Caldeira FMJ

DOI:

https://doi.org/10.33233/rbfe.v18i4.3237

Palabras clave:

exercício; creatina; técnicas histológicas; anatomia e histologia

Resumen

A creatina pode promover efeitos ergogênicos na prática do exercí­cio fí­sico de alta intensidade, entretanto, são encontradas poucas evidências que relatam a respeito dos efeitos morfométricos e estereológicos da associação desses componentes em modelos experimentais. Para isso, foram selecionados 24 ratos Wistar que se encontravam com idade de 15 semanas e estavam sob condições de alimentação e hidratação controladas. Para verificar as modificações morfométricas e estereológicas foi feita a classificação dos animais em quatro grupos: o controle, suplementado, treinamento, e treinamento e suplementado. Os animais dos grupos com suplementação de creatina foram suplementados (via gavagem) nas dosagens de 300 mg/kg de massa corporal durante nove semanas, sendo o perí­odo igual de treinamento que os animais que foram treinados estiveram submetidos, com o programa de treinamento baseado nos estudos de Honenberg & Farrar. Após o perí­odo de experimentação, os animais repousaram por 48 horas e foram feitas as excisões dos músculos latí­ssimo do dorso e bí­ceps braquial, que posteriormente foram submetidos ao protocolo de cortes histológicos em criostato, seguido da coloração em hematoxilina e eosina. Os resultados morfométricos indicaram poucas modificações da área nuclear para os grupos do experimento, apresentando diferença estatí­stica apenas no grupo treinado e suplementado em relação aos outros grupos do estudo. A perimetria sarcoplasmática foi mais evidente também no grupo submetido a ambos tratamentos. A análise estereológica verificou a presença de alguns fagócitos mononucleares no tecido muscular, sem, entretanto, apresentar condições de inflamação tecidual severa. Conclui-se, portanto, que a creatina apresenta efeitos morfométricos mais evidentes quando associada ao treinamento de força.

 

Biografía del autor/a

Victor Augusto Ramos Fernandes, FMJ

Graduado em Educação Fí­sica, Graduado em Ciências Biológicas, Mestre em Ciências da Saúde e Doutorando em Ciências da Saúde pela Faculdade de Medicina de Jundiaí­ Pesquisador do Laboratório de Morfologia dos Tecidos da Faculdade de Medicina de Jundiaí­, SP, Brasil

Felipe Lovaglio Belozo, Faculdade Network

Faculdade Network, campus Nova Odessa, Nova Odessa, SP, Brasil

Marcelo Conte, ESEF

Docente da disciplina de Fisiologia do Exercí­cio da Escola Superior de Educação Fí­sica de Jundiaí­, SP, Brasil

Eduardo José Caldeira, FMJ

Docente do curso de Medicina, disciplina de Anatomia Humana, da Faculdade de Medicina de Jundiaí­, SP, Brasil

Citas

Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F. Creatina supplementation and upper limb strength perfomance: a systematic review and meta-analysis. Sports Med 2017;47(1):163-73. doi: 10.1007/s40279-016-0571-4

Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000;80:1107-213.doi: 10.1152/physrev.2000.80.3.1107

Ipsiroglu OS, Stromberger C, Ilas J, Höger H, Mühl A, Stöckler-Ipsiroglu S. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various species. Life Sciences 2001;69(15):1805-15. doi: 10.1016/s0024-3205(01)01268-1

Hall M, Trojian T. Creatine supplementation. Current Sports Medicine Reports 2013;12(4):240-4. doi: 101249/JSR.0b013e31829cdff2

Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R et al. International society of sports nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport and medicine. J Int Soc Sports Nutr 2017;14:18. doi: 10.1186/s12970-017-0173-z

Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Inter Soc Sports Nutr 2013;10:36. doi: 10.1186/1550-2783-10-36

Rawson ES, Miles MP, Larson-Meyer DE. Dietary supplements for health, adaptation, and recovery in athletes. International Journal of Sports Nutrition and Exercise Metabolism 2018;28:188-99. doi: 10.123/ijsnem.2017-0340

Racette SN. Creatine supplementation and athletic perfomance. J Orthop Sports Phys Ther 2003;33(10):615-21. doi: 10.2519/jospt.2003.33.10.615

Claudino JG, Mezêncio B, Amaral S, Zanetti V, Benatti F, Roschel H et al. Creatine monohydrate supplementation on lower-limb muscle power in brazilian elite soccer players. Int Soc Sports Nutr 2014;11:32. doi: 10.1186/1550-2783-11-32

Percário S, Domingues SP, Teixeira LF, Vieira JL, Vasconcelos F, Ciarrocchi DM et al. Effects of creatine supplementation on oxidative stress profile of athletes. J Int Soc Sports Nutr 2012;9(1):56. doi: 10.1186/1550-2783-9-56

Kaviani M, Abassi A, Chilibeck PD. Creatine monohydrate supplementation during eight weeks of progressive resistance training increases strength in as little as two weeks without reducing markers of muscle damage. J Sports Med Phys Fitness 2019;59(4):608-12. doi: 10.23736/s0022-4707.18.08406-2

Zuniga J, Housh T, Camic C, Hendrix C, Mielke M, Johnxon G, Housh D, Schimidt R. The effects of creatine monohydrate loading on anaerobic perfomance and one-repetition maximum strength. J Strength Cond Res 2012;26(6):1651-6. doi: 10.1519/JSC.0b013e318234eba1

Cramer JT, Stout JR, Culbertson JY, Egan AD. Effects of creatine supplementation and three days of resistance training on muscle strength power output, and neuromuscular function. J Strength Cond Res 2007;21(3):668-77. doi: 10.1519/R-20005.1

Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond Muscles: the untapped potential of creatine. Int Immunopharmacol 2016;37:31-42. doi: 10.1016/j.intimp.2015.12.034

Fernandes VAR, Col LO, Moura EG, Matos MO, Caldeira EJ, Conte E. Treinamento de força e seus efeitos sobre a área de secção transversa e perímetro celular de miócitos do gastrocnêmio de rattus novergicus. Revista Brasileira de Nutrição Esportiva 2018;12(73):675-9.

Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids 2016;48(8):1793-1805. doi: 10.1007/s00726-016-2239-7

Pritchard NR, Kalra PA. Renal dysfunction accompanying oral creatine supplements. Lancet 1998;351:1252-3. doi: 10.1016/s0140-6736(05)79319-3

Gualano B, Ugrinowitsch C, Seguro AC, Lancha Junior AH. Does creatine supplementation harm renal function? Rev Bras Med Esporte 2008;14(1):68-73. doi: 10.1093/ndtplus/sfq177

Barcelos RP, Stefanello ST, Mauriz JL, Gonzalez-Gallego J, Soares FA. Creatine and the liver: metabolism and possible interactions. Mini Rev Med Chem 2016;16(1):12-8. doi: 10.2174/1389557515666150722102613

Yoshizumi WM, Tsourounis C. Effects of creatine supplementation on renal function. J Herb Pharmacother 2004;4(1):1-7. doi: 10.1080/J157v04n01_01

Galvan E, Wlaker DK, Simbo SY, Dalton R, Levers K, O’Connor A et al. Acute and chronica safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. J Int Soc Sports Nutr 2016;13:12. doi: 10.1186/s12970-016-0124-0

Barisic N, Bernert G, Ipsiroglu O, Stromberger C, Müller T, Gruber S et al. Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy. Neuropediatrics 2002;33(3):157-61. doi: 10.1055/s-2002-33679

Mukherjee RN, Chen P, Levy DL. Recent advances in understanding nuclear size and shape. Nucleus 2016;7(2):167-86. doi: 10.1080/19491034.2016.1162933

Walters AD, Bommakanti A, Cohen-Fix O. Shaping the nucleus: Factor and forces. J Cell Biochem 2012;113:2813-21. doi: 10.1002/jcb.24178

Haun CT, Vann CG, Osburn SC, Mumford PW, Roberson AP, Romero MA et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLOS ONE 2019;14(6):e021567. doi: 10.1371/journal.pone.0215267

Mobley CB, Haun CT, Roberson PA, Mumford PW, Kephart WC, Romero MA et al. Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. Plos One 2018;13(4):e0195203. doi: 10.1371/journal.pone.0195203

McGlory C, Devries MC, Philips SM, Skeletal muscle and resistance training: the role of protein synthesis in recovery and remodeling. J Appl Physiol (1985) 2017;122(3):541-8. doi: 10.1152/japplpshysiol.00613.2016

Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Protein myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985) 2008;104(6):1736-42. doi: 10.1152/japplphsyiol.01215.2007

Mitchell CJ, Curchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLOS ONE 2013;8(10):e78636. doi: 101371/journal.pone.0078636

Murton AJ, Greenhaff PL. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation. Int J Biochem Cell Biol 2013;45(10):2209-14. doi: 10.1016/j.biocel.2013.07.005

Passiakos SM, Carbone JW. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB life 2014;66(7):478-84. doi: 10.1002/jub.1291

Haun CT, Vann CG, Mobley CB, Osburn SC, Mumford PW, Roberson PA et al. Pre-training skeletal muscle fiber size and predominant fiber type best predict hypertrophic response to 6 weeks of resistance training in previously trained young man. Front Physiol 2019;10:297. doi: 10.3389/fphys.2019.00297

Tork ZA, Busekrus RB, Hydock DS. Effects of creatine supplementation on muscle fatigue in rats receiving doxarubicin treatment. Nutr Cancer 2019;11:1-8.

Alberts B, Johnson A, Walter P. Fundamentos de biologia celular. 5ed. Porto Alegre: Artes Médicas; 2010.

Poli RAB, Roncada LH, Artioli GG, Zagatto AM, Malta ES, Bertuzzi R, Zagatto AM. Creatine supplementation improves phosphagen energy pathway during supramaximal effort, but does not improve anaerobic capacity or performance. Front Physiol 2019;10:352. doi: 10.3389/fphys.2019.00352

Gualano B, Acquesta FM, Ugrinowitsch C, Tricoli V, Serrão JC. Effects of creatine supplementation on strength and muscle hypertrophy: currents concepts. Rev Bras Med Esporte 2010;16(3). doi: 10.1590/S1517-86922010000300013

Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobhav Rev 2017;80:443-56. doi: 10.1016/j.neubiorev.2017.06.012

Hall S. Biomecânica básica. 7º ed. Rio de Janeiro: Guanabara Koogan; 2012.

Souza EO, Tricoli V, Paulo AC, Silva-Batista C, Cardoso RK, Brum PC et al. Multivariate analysis in the maximum strength performance. Int J Sports Med 2012;33(12):970-4. doi: 10.1055/s-0032-1314813

Aagard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 2001;534:613-23. doi: 10.1111/j.1469-7793.2001.t01-1-00613.x

Brooke MH, Kaiser KK. Muscle fiber type: how many and what kind? Arch Neurol 1970;23:369-379.

Winter D. Biomechanics and motor control of human movement. 4ºed. Chichester: John Wiley and Sons; 2009.

Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord JM. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nature Reviews Immunology 2019. doi: 10.1038/s41577-019-0177-9

Publicado

2021-12-27