Bente Klarlund Peddersen: Atividade física e interação-ação músculo-cerébro

Autores/as

  • Leandro Paim da Cruz Carvalho UNIVASF
  • Jorge Luiz de Brito Gomes UNIVASF

DOI:

https://doi.org/10.33233/rbfe.v19i2.4111

Resumen

No recente artigo publicado na Nature Reviews Endocrinology, “Physical activity and muscle-brain crosstalk [1], o autor - Bente Klaurlund Peddersen, grande referência no estudo da biologia celular do músculo esquelético, contextualiza o tema citando grandes filósofos do passado e suas percepções sobre o elo da atividade física e a mente. Com destaque para a frase do filósofo alemão Friedrich Nietzsche: “Todos os grandes pensamentos são concebidos caminhando”...

Biografía del autor/a

Leandro Paim da Cruz Carvalho, UNIVASF

Esp. Fisiologia do exercício- FTC, Pós-graduação em Educação Física, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil

Jorge Luiz de Brito Gomes, UNIVASF

D.Sc., Educação Física UPE-UFPB, Docente da pós-graduação em Educação Física, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil

Citas

Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 2019;15(7):383-92. doi: 10.1038/s41574-019-0174-x

McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: the importance of skeletal muscle strength for healthy ageing. Biogerontology 2016;17(3):497-510. doi: 10.1007/s10522-015-9631-7

Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 2017;7(11):a029793. doi: 10.1101/cshperspect.a029793

Young MF, Valaris S, Wrann CD. A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Prog Cardiovasc Dis 2019;62(2):172-8. doi: 10.1016/j.pcad.2019.02.007

Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007;30(9):464-72. doi: 10.1016/j.tins.2007.06.011

Erickson KI, Gildengers AG, Butters MA. Physical activity and brain plasticity in late adulthood. Dialogues Clin Neurosci 2013;15(1):99-108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23576893

Kelley GA, Kelley KS. Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med [Internet]. 2017;10(1):26-36. doi: 10.1111/jebm.12236

Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M. Appetite control and energy balance: impact of exercise. Obes Rev 2015;16:67-76. doi: 10.1111/obr.12257

Crush EA, Frith E, Loprinzi PD. Experimental effects of acute exercise duration and exercise recovery on mood state. J Affect Disord 2018;229:282-7. doi: 10.1016/j.jad.2017.12.092

Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 2003;24(2/3):113-9. doi: 10.1023/a:1026070911202

Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G et al. Running-induced systemic cathepsin b secretion is associated with memory function. Cell Metab 2016;24(2):332-40. doi: 10.1016/j.cmet.2016.05.025

Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007;10(9):1089-93. doi: 10.1038/nn1971

Rasmussen P, Brassard P, Adser H, Pedersen M V, Leick L, Hart E et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009;94(10):1062-9. doi: 10.1113/expphysiol.2009.048512

De la Rosa A, Solana E, Corpas R, Bartrés-Faz D, Pallàs M, Vina J et al. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Sci Rep 2019;9(1):3337. doi: 10.1038/s41598-019-40040-8

Clow C, Jasmin BJ. Brain-derived Neurotrophic Factor Regulates Satellite Cell Differentiation and Skeletal Muscle Regeneration. Bronner-Fraser M, ed. Mol Biol Cell 2010;21(13):2182-90. doi: /10.1091/mbc.e10-02-0154

Church DD, Hoffman JR, Mangine GT, Jajtner AR, Townsend JR, Beyer KS et al. Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol 2016;121(1):123-8. doi: 10.1152/japplphysiol.00233.2016

Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S et al. The effect of exercise training on resting concentrations of peripheral Brain-Derived Neurotrophic Factor (BDNF): a meta-analysis. Hills RK, ed. PLoS One 2016;11(9):e0163037. doi: 10.1371/journal.pone.0163037

Novaes Gomes FG, Fernandes J, Vannucci Campos D, Cassilhas RC, Viana GM, D"™Almeida V et al. The beneficial effects of strength exercise on hippocampal cell proliferation and apoptotic signaling is impaired by anabolic androgenic steroids. Psychoneuroendocrinology 2014;50:106-17. doi: 10.1016/j.psyneuen.2014.08.009

Fernandes J, Arida RM. Does resistance exercise exert a role in hippocampal neurogenesis? J Physiol 2016;594(22):6799-9. doi: 10.1113/jp272309

Fortes L de S, Costa M da C, Perrier-Melo RJ, Brito-Gomes JL, Nascimento-Júnior JRA, de Lima-Júnior DRAA et al. Effect of volume in resistance training on inhibitory control in young adults: a randomized and crossover investigation. Front Psychol 2018;9. doi: 10.3389/fpsyg.2018.02028

Belviranli M, Okudan N, Kabak B, Erdoğan M, Karanfilci M. The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. Phys Sportsmed 2016;44(3):290-6. doi: 10.1080/00913847.2016.1196125

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481(7382):463-8. doi: 10.1038/nature10777

Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D et al. Exercise Induces Hippocampal BDNF through a PGC-1αFNDC5 Pathway. Cell Metab 2013;18(5):649-59. doi: 10.1016/j.cmet.2013.09.008

Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L et al. Irisin – a myth rather than an exercise-inducible myokine. Sci Rep 2015;5(1):8889. doi: 10.1038/srep08889

Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 2015;22(4):734-40. doi: 10.1016/j.cmet.2015.08.001

Küster OC, Laptinskaya D, Fissler P, Schnack C, Zügel M, Nold V et al. Novel blood-based biomarkers of cognition, stress, and physical or cognitive training in older adults at risk of dementia: preliminary evidence for a role of BDNF, Irisin, and the Kynurenine pathway. Leyhe T, ed. J Alzheimer´s Dis 2017;59(3):1097-111. doi: 10.3233/jad-170447

Fagundo AB, Jiménez-Murcia S, Giner-Bartolomé C, Agüera Z, Sauchelli S, Pardo M et al. Modulation of irisin and physical activity on executive functions in obesity and morbid obesity. Sci Rep 2016;6(1):30820. doi: 10.1038/srep30820

Coppen AJ, Doogan DP. Serotonin and its place in the pathogenesis of depression. J Clin Psychiatry 1988;49Suppl:4-11. http://www.ncbi.nlm.nih.gov/pubmed/3045111

Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007;12(11):988-1000. doi: 10.1038/sj.mp.4002006

Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012;13(7):465-77. doi: 10.1038/nrn3257

Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 2007;287:60-3;discussion 63-9. doi: 10.1002/9780470725207.ch5

Skovlund CW, Mørch LS, Kessing LV, Lidegaard Ø. Association of hormonal contraception with depression. JAMA Psychiatry 2016;73(11):1154. doi: 10.1001/jamapsychiatry.2016.2387

Oxenkrug G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine–nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol 2013;48(2):294-301. doi: 10.1007/s12035-013-8497-4

Publicado

2021-10-18