Biomarcadores de lesión tisular en la carrera a intervalos de alta intensidad: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33233/rbfex.v20i4.4752

Palabras clave:

high-intensity interval training; creatine kinase; lactate dehydrogenase

Resumen

Introduction: The improvement of aerobic and anaerobic capacity in athletes of different sports is related to high-intensity exercise performance, which causes cellular microlesions and leads to an inflammatory process necessary for muscle adaptation. Biochemical markers, such as creatine kinase (CK) and lactate dehydrogenase (LDH), have been used to measure muscle and inflammatory damage to identify the physiological response and improving sports performance. Objective: To describe the changes in the CK and LDH biomarkers after interval running at high intensity. Methods: We conducted a systematic review following the PRISMA guidelines and registered on PROSPERO (CRD42020201678), with a literature search, in February 2021, in the Medline, Lilacs, Scopus, SPORTDiscus, CINAHL, Web of Science, ScienceDirect, Cochrane, and Scielo databases. We used the descriptors “HIIT”, “L-Lactate Dehydrogenase”, “Creatine Kinase” and their synonyms, available in the Health Sciences Descriptors (DeCS) and Medical Subject Headings (MeSH). Results: From the 80 studies found, 6 met the inclusion criteria. Of these, four studies showed significant increases in CK and LDH simultaneously, while one study observed a significant increase only in CK and the other study only in LDH. The increases in biomarkers occurred at different magnitudes. The studies’ protocols and the sample characteristics showed high heterogeneity. Conclusion: High-intensity interval running can acutely elevate CK and LDL levels, making them excellent markers for injury risk and exercise load dosing.

Biografía del autor/a

Thiago Dias Sales, UERJ

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, Comissão de Desportos do Exército, Rio de Janeiro, RJ, Brasil

Danielli Braga de Mello, EsEFEx

Escola de Educação Física do Exército, RJ, Brasil

Wagner Siqueira Romão, UERJ

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, Escola de Educação Física do Exército, RJ, Brasil

Rodolfo de Alkmim Moreira Nunes, UERJ

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Eduardo Borba Neves, CDE

Comissão de Desportos do Exército, Rio de Janeiro, RJ, Brasil

Juliana Brandão Pinto de Castro, UERJ

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Rodrigo Gomes de Souza Vale, UERJ

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, Universidade Estácio de Sá, Cabo Frio, RJ, Brasil

Citas

Milanović Z, Sporiš G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sport Med 2015;45(10):1469–81. doi: 10.1007/s40279-015-0365-0

Wen D, Utesch T, Wu J, Robertson S, Liu J, Hu G, et al. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. J Sci Med Sport 2019;22(8):941-7. doi: 10.1016/j.jsams.2019.01.013

Cipryan L, Tschakert G, Hofmann P. Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J Sport Sci Med [Internet]. 2017 [cited 2021 Aug 4];16(2):219–29. Available from: https://pubmed.ncbi.nlm.nih.gov/28630575/

Girard J, Feng B, Chapman C. The effects of high-intensity interval training on athletic performance measures: a systematic review. Phys Ther Rev 2018;23(2):151-60. doi: 10.1080/10833196.2018.1462588

Dolci F, Kilding AE, Chivers P, Piggott B, Hart NH. High-intensity interval training shock microcycle for enhancing sport performance: a brief review. J Strength Cond Res 2020;34(4):1188-96. doi: 10.1519/JSC.0000000000003499

Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol 2017;32(5):541-56. doi: 10.1097/HCO.0000000000000437

Puggina EF, Tourinho Filho H, Machado DRL, Barbanti VJ. Efeitos do treinamento e de uma prova de triathlon em indicadores de lesão muscular e inflamação. Rev Bras Cienc Esporte 2016;38(2):115-23. doi: 10.1016/j.rbce.2015.10.014

Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull 2007;81-82: doi: 10.1093/bmb/ldm014.

Lavender AP, Nosaka K. Comparison between old and young men for changes in makers of muscle damage following voluntary eccentric exercise of the elbow flexors. Appl Physiol Nutr Metab 2006;31(3):218-25. doi: 10.1139/h05-028

Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets 2020;20(6):855-68. doi: 10.2174/1871530320666191230141110

Schumann G, Bonora R, Ceriotti F, Férard G, Ferrero CA, Franck PFH, et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase. Clin Chem Lab Med 2005;40(7):725-33. doi: 10.1515/CCLM.2002.125

Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med 2010;48(6):757-67. doi: 10.1515/CCLM.2010.179

Córdova A, Navas FJ, Lazzoli JK. Os radicais livres e o dano muscular produzido pelo exercício: papel dos antioxidantes. Rev Bras Med Esporte 2000 [Internet];6(5):204-8. [cited 2021 set 8]. Available from: https://www.scielo.br/j/rbme/a/6kB5p4fVyKtKMvY7JrmFHsk/?format=pdf&lang=pt

Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 2000;80(3):105581. doi: 10.1152/physrev.2000.80.3.1055

Page MJ, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372. doi: 10.1136/bmj.n71

Moola S, Munn Z, Sears K, Sfetcu R, Currie M, Lisy K, et al. Conducting systematic reviews of association (etiology): the Joanna Briggs Institute’s approach. Int J Evid Based Healthc 2015;13(3):163-9. doi: 10.1097/XEB.0000000000000064

Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem 2012;56:1-54. doi: 10.1016/b978-0-12-394317-0.00015-7

Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc 2015;13(1):9-18. doi: 10.1097/XEB.0000000000000020

Sterne JAC, Higgins JPT, Reeves BC on behalf of the development group for ACROBAT-NRSI. A Cochrane Risk Of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBAT-NRSI), Version 1.0.0, 24 September 2014. [Internet] [cited 2021 Aug 4]. Available from: http://www.bristol.ac.uk/population-health-sciences/centres/cresyda/barr/riskofbias/robins-i/acrobat-nrsi/

Cipryan L. IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. J Hum Kinet 2017;56(1):139-48. doi: 10.1515/hukin-2017-0031

Farias-Junior LF, Browne RAV, Freire YA, Oliveira-Dantas FF, Lemos TMAM, Galvão-Coelho NL, et al. Psychological responses, muscle damage, inflammation, and delayed onset muscle soreness to high-intensity interval and moderate-intensity continuous exercise in overweight men. Physiol Behav 2019;199:200-9. doi: 10.1016/j.physbeh.2018.11.028

Brandão LHA, Chagas TPN, Vasconcelos ABS, Oliveira VC, Fortes LS, Almeida MB, et al. Physiological and performance impacts after field supramaximal high-intensity interval training with different work-recovery duration. Front Physiol 2020;11:1075. doi: 10.3389/fphys.2020.01075

Santos PMF, Souza LMV, Santos MB, Araújo JES, Santos JL, Santos IB, et al. O efeito agudo do Rast Test sobre o estresse oxidativo e os marcadores de danos musculares em atletas jovens. J Phys Educ 2018;29(1):e-2980. doi: 10.4025/jphyseduc.v29i1.2980

Dorneles GP, Haddad DO, Fagundes VO, Vargas BK, Kloecker A, Romão PRT, et al. High intensity interval exercise decreases IL-8 and enhances the immunomodulatory cytokine interleukin-10 in lean and overweight-obese individuals. Cytokine 2016;77:1-9. doi: 10.1016/j.cyto.2015.10.003

Aloui K, Abedelmalek S, Chtourou H, Wong DP, Boussetta N, Souissi N. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test. Physiol Int 2017;104(1):77-90. doi: 10.1556/2060.104.2017.1.6

Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016;116(9):1595-625. doi: 10.1007/s00421-016-3411-1

Brancaccio P, Limongelli FM, Maffulli N. Monitoring of serum enzymes in sport. Br J Sports Med 2006;40(2):96-7. doi: 10.1136/bjsm.2005.020719

Silva FOC, Macedo DV. Exercício físico, processo inflamatório e adaptação: uma visão geral. Rev Bras Cineantropom Desempenho Hum 2011;13(4):320-8. doi: 10.5007/1980-0037.2011v13n4p320

Moghadam-Kia S, Oddis CV, Aggarwal R. Approach to asymptomatic creatine kinase elevation. Cleve Clin J Med 2016;83(1):37-42. doi: 10.3949/ccjm.83a.14120

Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact [Internet] 2014 [cited 2021 Aug 4];14(1):68-77. Available from: https://pubmed.ncbi.nlm.nih.gov/24583542/

Callegari GA, Novaes JS, Neto GR, Dias I, Garrido ND, Dani C. Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. J Hum Kinet 2017;58(1):65-72. doi: 10.1515/hukin-2017-0071

Paschalis V, Koutedakis Y, Jamurtas AZ, Mougios V, Baltzopoulos V. Equal volumes of high and low intensity of eccentric exercise in relation to muscle damage and performance. J Strength Cond Res 2005;19(1):184-8. doi: 10.1519/R-14763.1

Kobayashi Y, Takeuchi T, Hosoi T, Yoshizaki H, Loeppky JA. Effect of a marathon run on serum lipoproteins, creatine kinase, and lactate dehydrogenase in recreational runners. Res Q Exerc Sport 2005;76(4):450-5. doi: 10.1080/02701367.2005.10599318

Brancaccio P, Maffulli N, Buonauro R, Limongelli FM. Serum enzyme monitoring in sports medicine. Clin Sports Med 2008;27(1):1-18. doi: 10.1016/j.csm.2007.09.005

van de Vyver M, Myburgh KH. Cytokine and satellite cell responses to muscle damage: interpretation and possible confounding factors in human studies. J Muscle Res Cell Motil 2012;33(3‐4):177-85. doi: 10.1007/s10974-012-9303-z

Cerqueira É, Marinho DA, Neiva HP, Lourenço O. Inflammatory effects of high and moderate intensity exercise – A systematic review. Front Physiol 2020;10:1550. doi: 10.3389/fphys.2019.01550

Klapcińska B, Iskra J, Poprzecki S, Grzesiok K. The effects of sprint (300 m) running on plasma lactate, uric acid, creatine kinase and lactate dehydrogenase in competitive hurdlers and untrained men. J Sports Med Phys Fitness [Internet]. 2001 [cited 2021 Aug 4];41(3):306-11. Available from: https://pubmed.ncbi.nlm.nih.gov/11533559/

Bessa AL, Oliveira VN, Agostini GG, Oliveira RJS, Oliveira ACS, White GE, et al. Exercise intensity and recovery: Biomarkers of injury, inflammation, and oxidative stress. J Strength Cond Res 2016;30(2):311-9. doi: 10.1519/JSC.0b013e31828f1ee9

Lippi G, Schena F, Ceriotti F. Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis. Clin Chem Lab Med 2018;57(2):175-82. doi: 10.1515/cclm-2018-0656

Delsmann MM, Stürznickel J, Amling M, Ueblacker P, Rolvien T. Musculoskeletal laboratory diagnostics in competitive sport. Orthopade 2021. doi: 10.1007/s00132-021-04072-1

Shin K-A, Park KD, Ahn J, Park Y, Kim Y-J. Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running: observational study. Medicine (Baltimore) 2016;95(20):e3657. doi: 10.1097/MD.0000000000003657

Publicado

2021-09-09