Ginástica artística na juventude e retenção da densidade mineral óssea na vida adulta – estratégia para a prevenção da osteoporose? Uma revisão narrativa da literatura
DOI:
https://doi.org/10.33233/rbfex.v21i2.5185Palabras clave:
envelhecimento; osteopenia; osso; DXA; desporto; saúdeResumen
A osteoporose acomete grande parte da população idosa, contribuindo com limitações funcionais. A atividade física pode retardar a osteoporose, especialmente quando envolve grandes demandas de força e impacto, mas a osteopenia avançada é dificilmente revertida. A principal contribuição do exercício parece situar-se na juventude, pela maximização dos picos de densidade mineral óssea (DMO). Estudos sobre a retenção da DMO na vida adulta em resposta a diferentes atividades físicas são necessários. A ginástica artística (GA) encaixa-se no perfil de atividades com alto potencial osteogênico, com movimentos que combinam força e impacto (saltos, etc). Crianças e adolescentes que a praticam tendem a exibir picos de DMO elevados. A presente revisão narrativa analisou a literatura acerca da retenção da DMO decorrente da prática de GA em indivíduos de meia idade e idosos. As evidências disponíveis permitem pensar que: a) desde idades precoces, crianças e adolescentes que praticam GA competitiva exibem níveis maiores de DMO vs. indivíduos de idade equivalente fisicamente inativos ou que praticam outras modalidades desportivas; b) os poucos estudos comparativos que investigaram o potencial de retenção da DMO devido à prática de GA na juventude indicam que, pelo menos até a meia idade, ex-ginastas de ambos sexos tendem a exibir maior massa óssea que a população em geral. Apesar desses resultados promissores, há carência de pesquisas acerca da retenção da DMO em idosos que praticaram GA competitiva na juventude. Isso seria importante, uma vez sendo nessa faixa que se observa osteopenia avançada e, efetivamente, maior prevalência de osteoporose.
Citas
Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports M. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 2004;36(11):1985-96. doi:10.1249/01.mss.0000142662.21767.58
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006;17(12):1726-33. doi:10.1007/s00198-006-0172-4
International Osteoporosis Foundation (IOF). IOF Compendium of osteoporosis. Nyon: IOF; 2017
Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2019;30(1):3-44. doi:10.1007/s00198-018-4704-5
Min SK, Oh T, Kim SH, Cho J, Chung HY, Park DH et al. Position statement: exercise guidelines to increase peak bone mass in adolescents. J Bone Metab 2019;26(4):225-39. doi:10.11005/jbm.2019.26.4.225
Heaney RP. Achieving the protection of high peak bone mass. Osteoporos Int 2016;27(4):1279-80. doi:10.1007/s00198-015-3467-5
Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V et al. Peak bone mass. Osteoporos Int 2000;11(12):985-1009. doi:10.1007/s001980070020
Hui SL, Slemenda CW, Johnston CC, Jr. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1990;1(1):30-4. doi:10.1007/BF01880413
Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 2003;14(10):843-7. doi:10.1007/s00198-003-1454-8
Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 2006;21(9):1489-95. doi:10.1359/jbmr.060601
National Institutes for Health. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. South Med J 2001;94(6):569-73
Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex 2009;51(Suppl1):S5-17. doi:10.1590/s0036-36342009000700004
MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 2002;36(4):250-7; discussion 7. doi:10.1136/bjsm.36.4.250
Burt LA, Greene DA, Naughton GA. Bone health of young male gymnasts: a systematic review. Pediatr Exerc Sc 2017;29(4):456-64. doi:10.1123/pes.2017-0046
Exuperio IN, Agostinete RR, Werneck AO, Maillane-Vanegas S, Luiz-de-Marco R, Mesquita EDL et al. Impact of artistic gymnastics on bone formation marker, density and geometry in female adolescents: ABCD-Growth Study. J Bone Metab 2019;26(2):75-82. doi:10.11005/jbm.2019.26.2.75
Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998;13(3):500-7. doi:10.1359/jbmr.1998.13.3.500
Kirchner EM, Lewis RD, O'Connor PJ. Bone mineral density and dietary intake of female college gymnasts. Med Sci Sports Exerc 1995;27(4):543-9
Kirchner EM, Lewis RD, O'Connor PJ. Effect of past gymnastics participation on adult bone mass. J Appl Physiol 1996;80(1):226-32. doi:10.1152/jappl.1996.80.1.226
Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 1995;10(1):26-35. doi:10.1002/jbmr.5650100107
Geraldes AAR, Farinatti PTV. Envelhecimento, osteoporose e exercício. In: Farinatti PTV, ed. Envelhecimento, promoção da saúde e exercício. Barueri: Manole; 2013. p.38-58.
Hall JE. Guyton & Hall Tratado de fisiologia médica. 13 ed. Rio de Janeiro: Guanabara Koogan; 2017.
Marcus R, Drinkwater B, Dalsky G, Dufek J, Raab D, Slemenda C et al. Osteoporosis and exercise in women. Med Sci Sports Exerc 1992;24(Suppl6):S301-7. doi:10.1249/00005768-199206001-00013
Prior JC, Barr SI, Chow R, Faulkner RA. Prevention and management of osteoporosis: consensus statements from the Scientific Advisory Board of the Osteoporosis Society of Canada. 5. Physical activity as therapy for osteoporosis. CMAJ 1996;155(7):940-4.
Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 2012;4(2):61-76. doi:10.1177/1759720X11430858
Radominski SC, Bernardo W, Paula AP, Albergaria BH, Moreira C, Fernandes CE et al. Brazilian guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Rev Bras Reumatol 2017;57(Suppl2):452-66. doi:10.1016/j.rbre.2017.07.001
Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 2017;105:276-86. doi:10.1016/j.bone.2017.09.008
Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci 1983;64(5):537-40. doi:10.1042/cs0640537
Strope MA, Nigh P, Carter MI, Lin N, Jiang J, Hinton PS. Physical activity-associated bone loading during adolescence and young adulthood is positively associated with adult bone mineral density in men. Am J Mens Health 2015;9(6):442-50. doi:10.1177/1557988314549749
Bielemann RM, Domingues MR, Horta BL, Menezes AM, Goncalves H, Assuncao MC et al. Physical activity throughout adolescence and bone mineral density in early adulthood: the 1993 Pelotas (Brazil) Birth Cohort Study. Osteoporos Int 2014;25(8):2007-15. doi:10.1007/s00198-014-2715-4
Karlsson MK, Nordqvist A, Karlsson C. Physical activity increases bone mass during growth. Food Nutr Res 2008;52. doi:10.3402/fnr.v52i0.1871
Scerpella TA, Bernardoni B, Wang S, Rathouz PJ, Li Q, Dowthwaite JN. Site-specific, adult bone benefits attributed to loading during youth: A preliminary longitudinal analysis. Bone 2016;85:148-59. doi:10.1016/j.bone.2016.01.020
Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 2012;40(1):13-21. doi:10.1097/JES.0b013e318236e5ee
Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc 2000;32(6):1051-7. doi:10.1097/00005768-200006000-00003
Weeks BK, Young CM, Beck BR. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and Girls: the POWER PE study. J Bone Miner Res 2008;23(7):1002-11. doi:10.1359/jbmr.080226
Khan K, McKay HA, Haapasalo H, Bennell KL, Forwood MR, Kannus P et al. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton? J Sci Med Sport 2000;3(2):150-64. doi:10.1016/s1440-2440(00)80077-8
Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998;13(2):310-9. doi:10.1359/jbmr.1998.13.2.310
Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 2000;15(11):2245-50. doi:10.1359/jbmr.2000.15.11.2245
Taaffe DR, Robinson TL, Snow CM, Marcus R. High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 1997;12(2):255-60. doi:10.1359/jbmr.1997.12.2.255
Welten DC, Kemper HC, Post GB, Van Mechelen W, Twisk J, Lips P et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 1994;9(7):1089-96. doi:10.1002/jbmr.5650090717
Myers AM, Beam NW, Fakhoury JD. Resistance training for children and adolescents. Transl Pediatr 2017;6(3):137-43. doi:10.21037/tp.2017.04.01
Vuori IM. Dose-response of physical activity and low back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc 2001;33(Suppl6):S551-86; discussion 609-10. doi:10.1097/00005768-200106001-00026
Snow CM, Williams DP, LaRiviere J, Fuchs RK, Robinson TL. Bone gains and losses follow seasonal training and detraining in gymnasts. Calcif Tissue Int 2001;69(1):7-12. doi:10.1007/s00223-001-0014-5
Burt LA, Greene DA, Ducher G, Naughton GA. Skeletal adaptations associated with pre-pubertal gymnastics participation as determined by DXA and pQCT: a systematic review and meta-analysis. J Sci Med Sport 2013;16(3):231-9. doi:10.1016/j.jsams.2012.07.006
Gruodyte-Raciene R, Erlandson MC, Jackowski SA, Baxter-Jones AD. Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: a 4-year longitudinal hip structural analysis study. J Bone Miner Res 2013;28(12):2592-600. doi:10.1002/jbmr.1986
Zanker CL, Gannon L, Cooke CB, Gee KL, Oldroyd B, Truscott JG. Differences in bone density, body composition, physical activity, and diet between child gymnasts and untrained children 7-8 years of age. J Bone Miner Res 2003;18(6):1043-50. doi:10.1359/jbmr.2003.18.6.1043
Lindholm C, Hagenfeldt K, Ringertz H. Bone mineral content of young female former gymnasts. Acta Paediatr 1995;84(10):1109-12. doi:10.1111/j.1651-2227.1995.tb13507.x
Cassell C, Benedict M, Specker B. Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc 1996;28(10):1243-6. doi:10.1097/00005768-199610000-00006
Maimoun L, Coste O, Philibert P, Briot K, Mura T, Galtier F et al. Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry. Metabolism 2013;62(8):1088-98. doi:10.1016/j.metabol.2012.11.010
Nickols-Richardson SM, O'Connor PJ, Shapses SA, Lewis RD. Longitudinal bone mineral density changes in female child artistic gymnasts. J Bone Miner Res 1999;14(6):994-1002. doi:10.1359/jbmr.1999.14.6.994
Laing EM, Massoni JA, Nickols-Richardson SM, Modlesky CM, O'Connor PJ, Lewis RD. A prospective study of bone mass and body composition in female adolescent gymnasts. J Pediatr 2002;141(2):211-6. doi:10.1067/mpd.2002.126599
Laing EM, Wilson AR, Modlesky CM, O'Connor PJ, Hall DB, Lewis RD. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res 2005;20(3):509-19. doi:10.1359/JBMR.041127
Scerpella TA, Dowthwaite JN, Rosenbaum PF. Sustained skeletal benefit from childhood mechanical loading. Osteoporos Int 2011;22(7):2205-10. doi:10.1007/s00198-010-1373-4
Zanker CL, Osborne C, Cooke CB, Oldroyd B, Truscott JG. Bone density, body composition and menstrual history of sedentary female former gymnasts, aged 20-32 years. Osteoporos Int 2004;15(2):145-54. doi:10.1007/s00198-003-1524-y
Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res 2012;27(11):2298-305. doi:10.1002/jbmr.1689
Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res 2012;27(1):104-10. doi:10.1002/jbmr.514
Erlandson MC, Runalls SB, Jackowski SA, Faulkner RA, Baxter-Jones ADG. Structural strength benefits observed at the hip of premenarcheal gymnasts are maintained into young adulthood 10 years after retirement from the sport. Pediatr Exerc Sci 2017;29(4):476-85. doi:10.1123/pes.2017-0039
Pollock NK, Laing EM, Modlesky CM, O'Connor PJ, Lewis RD. Former college artistic gymnasts maintain higher BMD: a nine-year follow-up. Osteoporos Int 2006;17(11):1691-7. doi:10.1007/s00198-006-0181-3
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Patrícia Arruda de Albuquerque Farinatti, Nádia Souza Lima da Silva, Paulo Farinatti
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista; Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).