Análise cinemática da marcha com medidas normalizadas e não-normalizadas em indivíduos hígidos: um estudo experimental
DOI:
https://doi.org/10.33233/fb.v22i2.4750Resumo
O objetivo deste estudo foi analisar as possíveis relações entre a variável antropométrica comprimento dos membros inferiores e de passada na marcha, com valores naturais e normalizados, em velocidade auto-selecionada e acrescida de 50%, em indivíduos adultos jovens. Foram avaliados 32 sujeitos hígidos adultos entre 18-25 anos. Os deslocamentos corporais nas duas velocidades foram registrados através da técnica de cineantropometria, utilizando o software Skillspector® para quantificar o comprimento da passada entre as médias dos dados normalizadas e não-normalizadas, do segmento direito e do segmento esquerdo. A comparação entre os valores médios das passadas normalizadas e não-normalizadas, nas diferentes velocidades, foi realizada por meio do teste t student (p < 0,05), assim como o grau de associação entre o comprimento da passada e o comprimento do membro inferior, realizada pelo teste de correlação de Pearson (p < 0,05). Sendo assim, nosso estudo constatou uma correlação positiva entre as variáveis estudadas, nas duas velocidades e, uma diferença entre a passada com dados normalizados e não normalizados, em ambas as velocidades.
Referências
Mentiplay BF, Banky M, Clark RA, Kahn MB, Williams G. Lower limb angular velocity during walking at various speeds. Gait Posture 2018;65:190‐96. doi:10.1016/j.gaitpost.2018.06.162
Khamis S, Springer S, Ovadia D, Krimus S, Carmeli E. Measuring dynamic leg length during normal gait. Sensors (Basel) 2018;18(12):4191. doi:10.3390/s18124191
Lindemann U. Spatiotemporal gait analysis of older persons in clinical practice and research: Which parameters are relevant? Z Gerontol Geriatr 2020;53(2):171‐78. doi:10.1007/s00391-019-01520-8
Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018;64:181‐90. doi:10.1016/j.gaitpost.2018.06.012
Haddas R, Ju KL, Belanger T, Lieberman IH. The use of gait analysis in the assessment of patients afflicted with spinal disorders. Eur Spine J 2018;27(8):1712‐23. doi:10.1007/s00586-018-5569-1
Hughes-Oliver CN, Srinivasan D, Schmitt D, Queen RM. Gender and limb differences in temporal gait parameters and gait variability in ankle osteoarthritis. Gait Posture 2018; 65:228‐233. doi:10.1016/j.gaitpost.2018.07.180
Mikos V, Yen SC, Tay A, et al. Regression analysis of gait parameters and mobility measures in a healthy cohort for subject-specific normative values. PLoS One 2018;13(6):e0199215. doi:10.1371/journal.pone.0199215
Wahid F, Begg R, Lythgo N, Hass CJ, Halgamuge S, Ackland DC. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features. J Appl Biomech 2016; 32(2):128‐139. doi:10.1123/jab.2015-0035
Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev 2019;8(1):153. doi:10.1186/s13643-019-1063-z
Price MA, LaPrè AK, Johnson RT, Umberger BR, Sup FC 4th. A model-based motion capture marker location refinement approach using inverse kinematics from dynamic trials. Int J Numer Method Biomed Eng 2020; 36(1):e3283. doi:10.1002/cnm.3283
Khamis S, Carmeli E. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review. Gait Posture. 2017;57:115‐23. doi:10.1016/j.gaitpost.2017.05.028
Santili C et al. Avaliação das discrepâncias de comprimento de membros inferiores. Rev Bras Ortop 1998;33(1):41-44. [cited 2021 May 02]. Available from: http://rbo.org.br/detalhes/1680/pt-BR/avaliacao-das-discrepancias-de-comprimento-dos-membros-inferiores-
Hof AL. Scaling Gait Data to Body Size. Gait & Posture 1996;3(4):222-23. https://doi.org/10.1016/ 0966-6362(95)01057-2
Batista LA. Introdução à biomecânica aplicada. Rio de Janeiro: LaBiCoM/UERJ; 2004.
Batista LA, Knackfuss IG, Rosenbaum S. Estudo de elementos temporais da marcha em indivíduos com hálux valgo. Fisioter Bras 2005;6(1):53-60. doi: 10.33233/fb.v6i1.1961
Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. 2 ed. Cape Town, South Africa: Kiboho; 1999. p 4-5.
Weiers RM. Marketing research. 2 ed. London: Prentice-Hall; 1988.
Young RS, Andrew PD, Cummings GS. Effect of simulating leg length inequality on pelvic torsion and trunk mobility. Gait Posture 2000; 11(3):217‐23. doi:10.1016/s0966-6362(00)00048-5
Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko YP. Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Clin Biomech (Bristol, Avon) 2008;23(4):424‐33. doi:10.1016/j.clinbiomech.2007.11.010
Roberts M, Mongeon D and Prince F. Biomechanical parameters for gait analysis: a systematic review of healthy human gait. Phys Ther Rehabil 2017;4:6. doi: 10.7243/2055-2386-4-6
Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 1: spatiotemporal parameters and asymmetry ratios. Top Stroke Rehabil 2017;24(6):435‐46. doi:10.1080/10749357.2017.1285746
Ismailidis P, Egloff C, Hegglin L, et al. Kinematic changes in patients with severe knee osteoarthritis are a result of reduced walking speed rather than disease severity. Gait Posture 2020;79:256‐61. doi: 10.1016/j.gaitpost.2020.05.008
Jarvis HL, Brown SJ, Price M, et al. Return to employment after stroke in young adults: how important is the speed and energy cost of walking? Stroke 2019;50(11):3198‐204. doi:10.1161/STROKEAHA.119.025614
Winiarski S, Pietraszewska J, Pietraszewski B. Three-dimensional human gait pattern: reference data for young, active women walking with low, preferred, and high speeds. Biomed Res Int 2019;9232430. doi:10.1155/2019/9232430
Fryzowicz A, Murawa M, Kabaciński J, Rzepnicka A, Dworak LB. Reference values of spatiotemporal parameters, joint angles, ground reaction forces, and plantar pressure distribution during normal gait in young women. Acta Bioeng Biomech 2018;20(1):49‐57.
Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture 2018;60:154‐63. doi:10.1016/j.gaitpost.2017.11.024
Diamond LE, Wrigley TV, Bennell KL, Hinman RS, O'Donnell J, Hodges PW. Hip joint biomechanics during gait in people with and without symptomatic femoroacetabular impingement. Gait Posture 2016;43:198‐203. doi:10.1016/j.gaitpost.2015.09.023
Wearing SC, Reed LF, Urry SR. Agreement between temporal and spatial gait parameters from an instrumented walkway and treadmill system at matched walking speed. Gait Posture 2013; 38(3):380‐84. doi:10.1016/j.gaitpost.2012.12.017.
Hoppenfeld S. Propedêutica ortopédica, coluna e extremidades. 2 ed. São Paulo: Atheneu; 2008. p.142-43.
Nordin, M.; Frankel, H. Biomecânica básica do sistema musculoesquelético. Rio de Janeiro: Guanabara Koogan; 2000. p.380-83.
Smith AJJ, Lemaire ED. Temporal-spatial gait parameter models of very slow walking. Gait Posture 2018;61:125‐29. doi:10.1016/j.gaitpost.2018.01.003
Smith Y, Louw Q, Brink Y. The three-dimensional kinematics and spatiotemporal parameters of gait in 6-10 year old typically developed children in the Cape Metropole of South Africa - a pilot study. BMC Pediatr 2016;16(1):200. doi:10.1186/s12887-016-0736-1
Fan Y, Li Z, Han S, Lv C, Zhang B. The influence of gait speed on the stability of walking among the elderly. Gait Posture 2016;47:31‐36. doi:10.1016/j.gaitpost.2016.02.018
Chakravorty A, Mobbs RJ, Anderson DB, et al. The role of wearable devices and objective gait analysis for the assessment and monitoring of patients with lumbar spinal stenosis: systematic review. BMC Musculoskelet Disord 2019;20(1):288. doi:10.1186/s12891-019-2663-4
Wahid F, Begg RK, Hass CJ, Halgamuge S, Ackland DC. Classification of Parkinson's disease gait using spatial-temporal gait features. IEEE J Biomed Health Inform 2015; 19(6):1794‐802. doi:10.1109/JBHI.2015.2450232
Hof Al, Zijlstra W. Comment on "Normalization of temporal-distance parameters in pediatric gait". J Biomech 1997; 30(3):299‐302. doi:10.1016/s0021-9290(96)00126-1
Pinzone O, Schwartz MH, Baker R. Comprehensive non-dimensional normalization of gait data. Gait Posture 2016; 44:68‐73. doi:10.1016/j.gaitpost.2015.11.013
Kirtley C, Whittle MW, Jefferson RJ. Influence of walking speed on gait parameters. J Biomed Eng 1985;7(4):282‐88. doi:10.1016/0141-5425(85)90055-x
Sutherland DH, Olshen R, Biden E, Wyatt M. The development of mature walking. London: MacKeith Press; 1988.
Zijlstra W, Prokop T, Berger W. Adaptability of leg movements during normal treadmill walking and split-belt walking in children. Gait and Posture 1996;4(3):212-21. doi: 10.1016/0966-6362(95)01065-3
Publicado
Edição
Seção
Licença
Copyright (c) 2021 André Custódio da Silva, Juliana Silva de Almeida, Tiago Bastos Taboada, Sérgio Medeiros Pinto, Sergio Chermont, Igor Mauricio Antunes Carvalho, Marco Orsini, Júlio Guilherme Silva, Luiz Alberto Batista
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.