Kinematic gait analysis with normalized and non-normalized measurements in healthy individuals: an experimental study

Authors

DOI:

https://doi.org/10.33233/fb.v22i2.4750

Abstract

The aim of this study was to analyze the possible relationships between the anthropometric variable length of the lower limbs and gait stride, with natural and normalized values, at self-selected speed and increased by 50%, in young adult individuals. 32 healthy adult subjects aged 18-25 years were evaluated. Body movements at both speeds were recorded using the kinanthropometry technique, using the Skillspector® software to quantify the stride length between the normalized and non-normalized data averages for the right and left segments. The comparison between the mean values ​​of normalized and non-normalized strides, at different speeds, was performed using the Student t test (p < 0.05), as well as the degree of association between stride length and lower limb length, performed by the Pearson correlation test (p < 0.05). Thus, our study found a positive correlation between the variables studied, at both speeds, and a difference between the stride with normalized and non-normalized data, at both speeds.

Author Biographies

André Custódio da Silva, UERJ

Professor do Curso de Fisioterapia, Universidade Veiga de Almeida; Professor Lab. De Biomecânica e comportamento motor (LABICOM) Universidade do Estado do Rio de Janeiro (UERJ), Grupo de Estudo Fisioterapia e Insuficiência Cardíaca (GEFIC), Universidade Federal Fluminense, Rio de janeiro, Brasil

Juliana Silva de Almeida, UFRJ

Curso de Fisioterapia, Universidade Federal do Rio de Janeiro, Brasil

Tiago Bastos Taboada, UFRJ

Curso de Fisioterapia, Universidade Federal do Rio de Janeiro, Brasil

Sérgio Medeiros Pinto, UERJ

Professor Lab. de Biomecânica e comportamento motor (LABICOM), Universidade do Estado do Rio de Janeiro (UERJ), Professor do Curso de Educação Física, Universidade Estácio de Sá, Rio de Janeiro, Brasil

Sergio Chermont, UFF

Grupo de Estudo de Fisioterapia em Insuficiência Cardíaca (GEFIC), Universidade Federal Fluminense, Niteroí, Rio de janeiro, Brasil

Igor Mauricio Antunes Carvalho, UNISUAM

Mestrando em Ciências da Reabilitação, Centro Universitário Augusto Motta, Rio de Janeiro, Brasil

Marco Orsini, UNIG

Professor da Escola de Medicina da Universidade Nova Iguaçu, Rio de janeiro, Discente do Instituto Caduceu/Psiquiatria, Curitiba, Brasil

Júlio Guilherme Silva, UFRJ

Professor Adjunto do Departamento de Fisioterapia, Universidade Federal do Rio de Janeiro, Professor do Grupo de Pesquisa em Saúde Universidade Nova Iguaçu, Rio de janeiro, Brasil

Luiz Alberto Batista, UERJ

Professor Titular do Instituto de Educação Física e do Desporto, Universidade Estadual do Rio de Janeiro, Rio de janeiro, Brasil

References

Mentiplay BF, Banky M, Clark RA, Kahn MB, Williams G. Lower limb angular velocity during walking at various speeds. Gait Posture 2018;65:190‐96. doi:10.1016/j.gaitpost.2018.06.162

Khamis S, Springer S, Ovadia D, Krimus S, Carmeli E. Measuring dynamic leg length during normal gait. Sensors (Basel) 2018;18(12):4191. doi:10.3390/s18124191

Lindemann U. Spatiotemporal gait analysis of older persons in clinical practice and research: Which parameters are relevant? Z Gerontol Geriatr 2020;53(2):171‐78. doi:10.1007/s00391-019-01520-8

Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018;64:181‐90. doi:10.1016/j.gaitpost.2018.06.012

Haddas R, Ju KL, Belanger T, Lieberman IH. The use of gait analysis in the assessment of patients afflicted with spinal disorders. Eur Spine J 2018;27(8):1712‐23. doi:10.1007/s00586-018-5569-1

Hughes-Oliver CN, Srinivasan D, Schmitt D, Queen RM. Gender and limb differences in temporal gait parameters and gait variability in ankle osteoarthritis. Gait Posture 2018; 65:228‐233. doi:10.1016/j.gaitpost.2018.07.180

Mikos V, Yen SC, Tay A, et al. Regression analysis of gait parameters and mobility measures in a healthy cohort for subject-specific normative values. PLoS One 2018;13(6):e0199215. doi:10.1371/journal.pone.0199215

Wahid F, Begg R, Lythgo N, Hass CJ, Halgamuge S, Ackland DC. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features. J Appl Biomech 2016; 32(2):128‐139. doi:10.1123/jab.2015-0035

Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev 2019;8(1):153. doi:10.1186/s13643-019-1063-z

Price MA, LaPrè AK, Johnson RT, Umberger BR, Sup FC 4th. A model-based motion capture marker location refinement approach using inverse kinematics from dynamic trials. Int J Numer Method Biomed Eng 2020; 36(1):e3283. doi:10.1002/cnm.3283

Khamis S, Carmeli E. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review. Gait Posture. 2017;57:115‐23. doi:10.1016/j.gaitpost.2017.05.028

Santili C et al. Avaliação das discrepâncias de comprimento de membros inferiores. Rev Bras Ortop 1998;33(1):41-44. [cited 2021 May 02]. Available from: http://rbo.org.br/detalhes/1680/pt-BR/avaliacao-das-discrepancias-de-comprimento-dos-membros-inferiores-

Hof AL. Scaling Gait Data to Body Size. Gait & Posture 1996;3(4):222-23. https://doi.org/10.1016/ 0966-6362(95)01057-2

Batista LA. Introdução à biomecânica aplicada. Rio de Janeiro: LaBiCoM/UERJ; 2004.

Batista LA, Knackfuss IG, Rosenbaum S. Estudo de elementos temporais da marcha em indivíduos com hálux valgo. Fisioter Bras 2005;6(1):53-60. doi: 10.33233/fb.v6i1.1961

Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. 2 ed. Cape Town, South Africa: Kiboho; 1999. p 4-5.

Weiers RM. Marketing research. 2 ed. London: Prentice-Hall; 1988.

Young RS, Andrew PD, Cummings GS. Effect of simulating leg length inequality on pelvic torsion and trunk mobility. Gait Posture 2000; 11(3):217‐23. doi:10.1016/s0966-6362(00)00048-5

Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko YP. Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Clin Biomech (Bristol, Avon) 2008;23(4):424‐33. doi:10.1016/j.clinbiomech.2007.11.010

Roberts M, Mongeon D and Prince F. Biomechanical parameters for gait analysis: a systematic review of healthy human gait. Phys Ther Rehabil 2017;4:6. doi: 10.7243/2055-2386-4-6

Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 1: spatiotemporal parameters and asymmetry ratios. Top Stroke Rehabil 2017;24(6):435‐46. doi:10.1080/10749357.2017.1285746

Ismailidis P, Egloff C, Hegglin L, et al. Kinematic changes in patients with severe knee osteoarthritis are a result of reduced walking speed rather than disease severity. Gait Posture 2020;79:256‐61. doi: 10.1016/j.gaitpost.2020.05.008

Jarvis HL, Brown SJ, Price M, et al. Return to employment after stroke in young adults: how important is the speed and energy cost of walking? Stroke 2019;50(11):3198‐204. doi:10.1161/STROKEAHA.119.025614

Winiarski S, Pietraszewska J, Pietraszewski B. Three-dimensional human gait pattern: reference data for young, active women walking with low, preferred, and high speeds. Biomed Res Int 2019;9232430. doi:10.1155/2019/9232430

Fryzowicz A, Murawa M, Kabaciński J, Rzepnicka A, Dworak LB. Reference values of spatiotemporal parameters, joint angles, ground reaction forces, and plantar pressure distribution during normal gait in young women. Acta Bioeng Biomech 2018;20(1):49‐57.

Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture 2018;60:154‐63. doi:10.1016/j.gaitpost.2017.11.024

Diamond LE, Wrigley TV, Bennell KL, Hinman RS, O'Donnell J, Hodges PW. Hip joint biomechanics during gait in people with and without symptomatic femoroacetabular impingement. Gait Posture 2016;43:198‐203. doi:10.1016/j.gaitpost.2015.09.023

Wearing SC, Reed LF, Urry SR. Agreement between temporal and spatial gait parameters from an instrumented walkway and treadmill system at matched walking speed. Gait Posture 2013; 38(3):380‐84. doi:10.1016/j.gaitpost.2012.12.017.

Hoppenfeld S. Propedêutica ortopédica, coluna e extremidades. 2 ed. São Paulo: Atheneu; 2008. p.142-43.

Nordin, M.; Frankel, H. Biomecânica básica do sistema musculoesquelético. Rio de Janeiro: Guanabara Koogan; 2000. p.380-83.

Smith AJJ, Lemaire ED. Temporal-spatial gait parameter models of very slow walking. Gait Posture 2018;61:125‐29. doi:10.1016/j.gaitpost.2018.01.003

Smith Y, Louw Q, Brink Y. The three-dimensional kinematics and spatiotemporal parameters of gait in 6-10 year old typically developed children in the Cape Metropole of South Africa - a pilot study. BMC Pediatr 2016;16(1):200. doi:10.1186/s12887-016-0736-1

Fan Y, Li Z, Han S, Lv C, Zhang B. The influence of gait speed on the stability of walking among the elderly. Gait Posture 2016;47:31‐36. doi:10.1016/j.gaitpost.2016.02.018

Chakravorty A, Mobbs RJ, Anderson DB, et al. The role of wearable devices and objective gait analysis for the assessment and monitoring of patients with lumbar spinal stenosis: systematic review. BMC Musculoskelet Disord 2019;20(1):288. doi:10.1186/s12891-019-2663-4

Wahid F, Begg RK, Hass CJ, Halgamuge S, Ackland DC. Classification of Parkinson's disease gait using spatial-temporal gait features. IEEE J Biomed Health Inform 2015; 19(6):1794‐802. doi:10.1109/JBHI.2015.2450232

Hof Al, Zijlstra W. Comment on "Normalization of temporal-distance parameters in pediatric gait". J Biomech 1997; 30(3):299‐302. doi:10.1016/s0021-9290(96)00126-1

Pinzone O, Schwartz MH, Baker R. Comprehensive non-dimensional normalization of gait data. Gait Posture 2016; 44:68‐73. doi:10.1016/j.gaitpost.2015.11.013

Kirtley C, Whittle MW, Jefferson RJ. Influence of walking speed on gait parameters. J Biomed Eng 1985;7(4):282‐88. doi:10.1016/0141-5425(85)90055-x

Sutherland DH, Olshen R, Biden E, Wyatt M. The development of mature walking. London: MacKeith Press; 1988.

Zijlstra W, Prokop T, Berger W. Adaptability of leg movements during normal treadmill walking and split-belt walking in children. Gait and Posture 1996;4(3):212-21. doi: 10.1016/0966-6362(95)01065-3

Published

2021-05-21