Função cognitiva, comportamento alimentar e neuroimagem em obesos: uma revisão sistemática

Autores

DOI:

https://doi.org/10.33233/fb.v24i4.5528

Palavras-chave:

obesidade, eletroencefalograma, cognição, ressonância magnética funcional

Resumo

Introdução: A obesidade é considerada uma desordem multifatorial influenciada por fatores  hormonais, dietéticos, comportamentais, emocionais, atencionais e controle cognitivo que interferem no equilíbrio ingestão e gasto energético. A influência da obesidade no declínio cognitivo e prejuízos a funções e estruturas cerebrais além de sua associação com processos neurodegenerativos precoces tem sido observada. Objetivo: Esta revisão buscou identificar as áreas corticais mais ativadas em indivíduos obesos, investigar a existência de comprometimento cognitivo e a possível interferência no comportamento alimentar. Além disso, buscou-se identificar os métodos de neuroimagem mais utilizados para avaliação desses processos. Buscou-se estudos publicados 2006 e 2021. Foram pesquisadas as bases de dados indexadas PUBMED, LILACS e SCIELO. Foram selecionados estudos observacionais que comparassem indivíduos obesos (IMC > 30 kg/m²) e não obesos. Foi utilizado o  Quality Assessment of Observational Cohort and Cross-Sectional Studies da National Heart, Lung and Blood Institute (NIH) para análise de qualidade metodológica. Resultados: Foram reportados 22.484 títulos. Após a aplicação dos critérios de elegibilidade, foram selecionados 154 artigos. Desses, onze foramincluídos para análise nesta revisão.  Nesta análise, diferenças foram encontradas quanto ao tempo de reação, acurácia ou áreas cerebrais inativadas durante os testescognitvosou estímulos com figuras de comida entre os grupos estudados. Conclusão: Mudanças estruturais compatíveis com prejuízos na performance cognitiva a longo prazo foram identificadas, assim como alterações estruturais e funcionais que podem auxiliar o entendimento de comportamento alimentar compulsivo presente em indivíduos obesos.

Biografia do Autor

Jaqueline Peixoto Lopes, UFRJ

Mestrado Profissional de Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (MPT - IBCCF  UFRJ), Rio de Janeiro, RJ, Brasil

Emanoele Anastácia da Silva Araujo Melo, UFRJ

Mestrado Profissional de Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (MPT - IBCCF  UFRJ), Rio de Janeiro, RJ, Brasil

Frederico Barreto Kochem, Anhanguera

Centro Universitário Anhanguera de Niterói, Rio de Janeiro, RJ; Universidade Federal do Rio de Janeiro (UFRJ), Professor Adjunto, Faculdade de Fisioterapia, Rio de Janeiro, RJ, Brasil

Ana Carolina Nader Vasconcelos Messias, HFSE

Hospital Federal dos Servidores do Estado, Rio de Janeiro (HFSE), RJ,Brasil

Marco Orsini, UNIG

Professor Adjunto do Curso de Medicina da Universidade Iguaçu, (UNIG), RJ, Brasil

Victor Hugo do Vale Bastos, UFDPAR

Docente da graduação em Fisioterapia e dos programas de pós graduação em Ciências Biomédicas e Biotecnologia da Universidade Federal do delta do Parnaíba (UFDPAR), Parnaìba, PI, Brasil

Julio Guilherme Silva

Mestrado Profissional de Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho, Professor Adjunto, Faculdade de Fisioterapia, Universidade Federal do Rio de Janeiro (MPT - IBCCF  UFRJ), Rio de Janeiro, RJ, Brasil

 

Cristiane Sousa Nascimento Baez Garcia, IFRJ

Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Curso de Fisioterapia  RJ, Brasil

Luciana Moisés Camilo, IFRJ

Mestrado Profissional de Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (MPT - IBCCF  UFRJ), Rio de Janeiro, RJ; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Curso de Fisiotetapia  RJ, Brasil

Mauricio de Sant Anna Junior, IFRJ

Mestrado Profissional de Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (MPT - IBCCF  UFRJ), Rio de Janeiro, RJ; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Curso de Fisioterapia  RJ, Brasil

Referências

García-García I, Narberhaus A, Marqués-Iturria I et al. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur Eat Disorders Rev. 2013;21:89-98. doi: 10.1002/erv.2216

WHO. World Health Organization (2016). Obesity and overweight 2016[Internet] [citado 2023 ago 25]. Disponível em: http://www.who.int/mediacentre/factsheets/fs311/en/

Farr OM, Li CR, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging. Metabolism. 2016;65(5):699-713. doi: 10.1016/j.metabol.2016.02.002

Convit A. Obesity is associated with structural and functional brain abnormalities: where do we go from here? Psychosom Med. 2012;74(7):673-4. doi: 10.1097/PSY.0b013e3182662c56

Bocarsly ME, Fasolino M, Kane GA et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. PNAS. 2015; 112:15731–36. doi: 10.1073/pnas.1511593112

KullmannS, Heni M, Veit R et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;28(6):1044-50. doi: 10.2337/dc14-2319

Driscoll I, Beydoun MA, An Y, Davatzikos C, Ferrucci L, Zonderman AB, Resnick SM. Midlife obesity and trajectories of brain volume changes in older adults. Hum Brain Mapp. 2011;33(9):2204-10. doi: 10.1002/hbm.21353

Sant Anna Junior M, Carneiro JRI, Carvalhal RF et al. Cardiovascular autonomic dysfunction in patients with morbid obesity. Arq Bras Cardiol. 2015;105(6). doi: 10.5935/abc.20150125

Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab. 2020;40(11):2135–51. doi: 10.1177/0271678X20941263

Stopyra MA, Friederich HC, Lavandier N, Mönning E, Bendszus M, Herzog W, Simon JJ. Homeostasis and food craving in obesity: a functional MRI study. Int J Obes. 2021;45:2464-2470. doi: 10.1038/s41366-021-00920-4

Cornier MA, McFadden KL, Thomas EA, Bechtell JL, Eichman LS, Bessesen DH, Tregellas JR. Differences in the neuronal response to food in obesity-resistant as compared to obesity-prone individuals. Physiol Behav. 2013;110-111:122-128. doi: 10.1016/j.physbeh.2013.01.002

Cornier MA, Melanson EL, Salzberg AK, Bechtell JL, TregellasJR. The effects of exercise on the neuronal response to food cues. Physiol Behav. 2012;105:1028-34. doi: 10.1016/j.physbeh.2011.11.023

Blechert J, Klackl J, Miedl SF, Wilhelm FH. To eat or not to eat: effects of food availability on reward system activity during food picture viewing. Appetite. 2016;99:256-61. doi: 10.1016/j.appet.2016.01.006

Kullmann S, Callaghan MF, Heni M et al. Specific white matter tissue microstructure changes associated with obesity. Neuroimage. 2016;125:36-44. doi: 10.1016/j.neuroimage.2015.10.006

Alonso-Alonso M. Translating tDCS into the field of obesity: mechanism-driven approaches. Front Hum Neurosci. 2013;7:1-3. doi: 10.3389/fnhum.2013.00512

Figley CR, Asem JSA, Levenbaum EL, Courtney SM. Effects of body mass index and body fat percent on default mode, executive control, and salience network structure and function. Front Hum Neurosci. 2016;10:1-23. doi: 10.3389/fnins.2016.00234

Ronan l, Bloch AFA, Wagstyl K et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63-70. doi: 10.1016/j.neurobiolaging.2016.07.010

Kulmann S, Heni M, FritscheA, Preissl H. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol. 2015;21;419-23. doi: 10.1111/jne.12254

Galvão TF, Pansani TSA. Principais itens para relatar revisões sistemáticas e meta-análises: a recomendação PRISMA. Epidemiol Serv Saúde. 2015;24:335-42. doi: 10.5123/S1679-49742015000200017

Quality assessment tool for observational cohort and cross-sectional studies – NHLBI, NIH. Disponível em: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

Maass SWMC, Roorda C, Berendsen AJ, Verhaak PFM, Bock GH. The prevalence of long-term symptoms of depression and anxiety after breast cancer treatment: A systematic review. Maturitas 2015;82(1):100-8. doi: 10.1016/j.maturitas.2015.04.010

Tuulari JJ, Karlsson HK, Hirvonen J, Salminen P, Nuutila P, Nummenmaa L. Neural circuits for cognitive appetite control in healthy and obese individuals: an fmri study. PLoS One. 2015;10(2):e0116640. doi: 10.1371/journal.pone.0116640

Hendrick OM, Luo X, Zhang S, Li CR. Saliency processing and obesity: a preliminary imaging study of the stop signal task. Obesity. 2015;20:1796–802. doi: 10.1038/oby.2011.180

Balodis IM, Molina ND, Kober H et al.Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity. 2013;21:367-77. doi: 10.1002/oby.20068

García-García I, Jurado MA, Garolera M et al. Alterations of the salience network in obesity: aresting-state fmri study. Hum Brain Mapp. 2012. doi: 10.1002/hbm.22104

Fernandez-Real JM, Serino M, Blasco G et al. Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab. 2015; 100: 4505–13. doi: 10.1210/jc.2015-3076

Puig J, Blasco G, Daunis-i-Estadella J et al. Hypothalamic damage is associated with inflammatory markers and worse cognitive performance in obese subjects. J Clin Endocrinol Metab. 2015;100: E276–E281. doi: 10.1210/jc.2014-2682

BolzeniusJD,Laidlaw DH, Cabeen RP et al. Brain structure and cognitive correlates of body mass index in healthy older adults. Behav Brain Res. 2015;278: 342–47. doi: 10.1016/j.bbr.2014.10.010

Volkow ND, Wang GJ, Telang F. Inverse association between bmi and prefrontal metabolic activity in healthy adults. Obesity. 2008;17:60–65. doi: 10.1038/oby.2008.469

Hume DJ, Howells FM, Rauch HGL, Kroff J, Lambert EV. Electrophysiological indices of visual food cue-reactivity.Differences in obese, overweight and normal weight women.Appetite. 2015; 85: 126–37. doi: 10.1016/j.appet.2014.11.012

Nijs IMT, Franken IHA, Muris P. Food-related stroop interference in obese and normal-weight individuals: behavioral and electrophysiological indices. Eat Behav. 2010;11:258–65. doi: 10.1016/j.eatbeh.2010.07.002

Stingl KT, Kullmann S, Ketterer C, Heni M, Häring HU, Fritsche A, Preissl H. Neuronal correlates of reduced memory performance in overweight subjects. NeuroImage. 2012;60:362–69. doi: 10.1016/j.neuroimage.2011.12.012

Eisenstein SA, Gredysa DM, Antenor-Dorsey JA et al. Insulin, central dopamine d2 receptors, and monetary reward discounting in obesity. PLoS One. 2015. doi: 10.1371/journal.pone.0133621

Bloemendaal L, Ijzerman RG, Kulve JS, Barkhof F, Diamant M, Veltman DJ, Duinkerken E. Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis. 2016;31:621–29. doi: 10.1007/s11011-016-9792-3

Gunstad J, Strain G, Devlin MJ et al. Improved memory function 12 weeks after bariatric surgery. Surg Obes and Relal Dis. 2011;7:465–72. doi: 10.1016/j.soard.2010.09.015

Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, Nuutila P. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One. 2012. doi: 10.1371/journal.pone.0031089

Ziauddeen H, Alonso-Alonso M,Hill JO, Kelley M,Khan NA. Obesity and the neurocognitive basis of food reward and the control of intake. AdvNutr. 2015;6:474–86. doi: 10.3945/an.115.008268

Hendrikse JJ, Cachia RL, Kothe EJ, McPhie S, Skouteris H, Hayden MJ. Attentional biases for food cues in overweight and individuals with obesity: a systematic review of the literature. Obes Rev. 2015; 16: 424–32. doi: 10.1111/obr.12265

Arquivos adicionais

Publicado

2023-09-06