Cognitive function, eating behavior and neuroimaging studies in obese: a systematic review
DOI:
https://doi.org/10.33233/fb.v24i4.5528Keywords:
obesity, electroencephalogram, cognition, functional magnetic resonance imagingAbstract
Background: Obesity is a multifactorial disorder influenced by hormonal, dietary, behavioral, emotional, attentional, and cognitive control factors that interfere with the balance between energy intake and expenditure. The association of obesity with cognitive decline, brain functional and structural damage, and early neurodegenerative processes has been observed. Objective: This systematic review aimed to identify activated cortical areas in obese individuals and investigate the role of cognitive impairment in interfering with eating behavior. The most frequently used neuroimaging and brain mapping methods to evaluate these processes were also identified. Methods: We searched for studies published between 2006 and 2021 in the indexed databases PUBMED, LILACS, and SCIELO. Observational studies that compared obese individuals (body mass index > 30 kg/m²) and nonobese individuals were selected. The National Heart, Lung, and Blood Institute (NIH) Quality Assessment of Observational Cohort and Cross-sectional Studies was used for methodological quality analysis. Results: The literature search returned 22,484 relevant titles. After applying the eligibility criteria, 154 articles were selected, and of these, 11 were analyzed in this review. In the analysis, the groups studied showed differences in reaction time, accuracy, or inactivated brain areas during tests or stimulation with food images. Conclusion: Structural changes compatible with impairments in long-term cognitive performance were identified, as well as structural and functional changes that may help understanding the compulsive eating behavior present in obese individuals.
References
García-García I, Narberhaus A, Marqués-Iturria I et al. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur Eat Disorders Rev. 2013;21:89-98. doi: 10.1002/erv.2216
WHO. World Health Organization (2016). Obesity and overweight 2016[Internet] [citado 2023 ago 25]. Disponível em: http://www.who.int/mediacentre/factsheets/fs311/en/
Farr OM, Li CR, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging. Metabolism. 2016;65(5):699-713. doi: 10.1016/j.metabol.2016.02.002
Convit A. Obesity is associated with structural and functional brain abnormalities: where do we go from here? Psychosom Med. 2012;74(7):673-4. doi: 10.1097/PSY.0b013e3182662c56
Bocarsly ME, Fasolino M, Kane GA et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. PNAS. 2015; 112:15731–36. doi: 10.1073/pnas.1511593112
KullmannS, Heni M, Veit R et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;28(6):1044-50. doi: 10.2337/dc14-2319
Driscoll I, Beydoun MA, An Y, Davatzikos C, Ferrucci L, Zonderman AB, Resnick SM. Midlife obesity and trajectories of brain volume changes in older adults. Hum Brain Mapp. 2011;33(9):2204-10. doi: 10.1002/hbm.21353
Sant Anna Junior M, Carneiro JRI, Carvalhal RF et al. Cardiovascular autonomic dysfunction in patients with morbid obesity. Arq Bras Cardiol. 2015;105(6). doi: 10.5935/abc.20150125
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab. 2020;40(11):2135–51. doi: 10.1177/0271678X20941263
Stopyra MA, Friederich HC, Lavandier N, Mönning E, Bendszus M, Herzog W, Simon JJ. Homeostasis and food craving in obesity: a functional MRI study. Int J Obes. 2021;45:2464-2470. doi: 10.1038/s41366-021-00920-4
Cornier MA, McFadden KL, Thomas EA, Bechtell JL, Eichman LS, Bessesen DH, Tregellas JR. Differences in the neuronal response to food in obesity-resistant as compared to obesity-prone individuals. Physiol Behav. 2013;110-111:122-128. doi: 10.1016/j.physbeh.2013.01.002
Cornier MA, Melanson EL, Salzberg AK, Bechtell JL, TregellasJR. The effects of exercise on the neuronal response to food cues. Physiol Behav. 2012;105:1028-34. doi: 10.1016/j.physbeh.2011.11.023
Blechert J, Klackl J, Miedl SF, Wilhelm FH. To eat or not to eat: effects of food availability on reward system activity during food picture viewing. Appetite. 2016;99:256-61. doi: 10.1016/j.appet.2016.01.006
Kullmann S, Callaghan MF, Heni M et al. Specific white matter tissue microstructure changes associated with obesity. Neuroimage. 2016;125:36-44. doi: 10.1016/j.neuroimage.2015.10.006
Alonso-Alonso M. Translating tDCS into the field of obesity: mechanism-driven approaches. Front Hum Neurosci. 2013;7:1-3. doi: 10.3389/fnhum.2013.00512
Figley CR, Asem JSA, Levenbaum EL, Courtney SM. Effects of body mass index and body fat percent on default mode, executive control, and salience network structure and function. Front Hum Neurosci. 2016;10:1-23. doi: 10.3389/fnins.2016.00234
Ronan l, Bloch AFA, Wagstyl K et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63-70. doi: 10.1016/j.neurobiolaging.2016.07.010
Kulmann S, Heni M, FritscheA, Preissl H. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol. 2015;21;419-23. doi: 10.1111/jne.12254
Galvão TF, Pansani TSA. Principais itens para relatar revisões sistemáticas e meta-análises: a recomendação PRISMA. Epidemiol Serv Saúde. 2015;24:335-42. doi: 10.5123/S1679-49742015000200017
Quality assessment tool for observational cohort and cross-sectional studies – NHLBI, NIH. Disponível em: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
Maass SWMC, Roorda C, Berendsen AJ, Verhaak PFM, Bock GH. The prevalence of long-term symptoms of depression and anxiety after breast cancer treatment: A systematic review. Maturitas 2015;82(1):100-8. doi: 10.1016/j.maturitas.2015.04.010
Tuulari JJ, Karlsson HK, Hirvonen J, Salminen P, Nuutila P, Nummenmaa L. Neural circuits for cognitive appetite control in healthy and obese individuals: an fmri study. PLoS One. 2015;10(2):e0116640. doi: 10.1371/journal.pone.0116640
Hendrick OM, Luo X, Zhang S, Li CR. Saliency processing and obesity: a preliminary imaging study of the stop signal task. Obesity. 2015;20:1796–802. doi: 10.1038/oby.2011.180
Balodis IM, Molina ND, Kober H et al.Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity. 2013;21:367-77. doi: 10.1002/oby.20068
García-García I, Jurado MA, Garolera M et al. Alterations of the salience network in obesity: aresting-state fmri study. Hum Brain Mapp. 2012. doi: 10.1002/hbm.22104
Fernandez-Real JM, Serino M, Blasco G et al. Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab. 2015; 100: 4505–13. doi: 10.1210/jc.2015-3076
Puig J, Blasco G, Daunis-i-Estadella J et al. Hypothalamic damage is associated with inflammatory markers and worse cognitive performance in obese subjects. J Clin Endocrinol Metab. 2015;100: E276–E281. doi: 10.1210/jc.2014-2682
BolzeniusJD,Laidlaw DH, Cabeen RP et al. Brain structure and cognitive correlates of body mass index in healthy older adults. Behav Brain Res. 2015;278: 342–47. doi: 10.1016/j.bbr.2014.10.010
Volkow ND, Wang GJ, Telang F. Inverse association between bmi and prefrontal metabolic activity in healthy adults. Obesity. 2008;17:60–65. doi: 10.1038/oby.2008.469
Hume DJ, Howells FM, Rauch HGL, Kroff J, Lambert EV. Electrophysiological indices of visual food cue-reactivity.Differences in obese, overweight and normal weight women.Appetite. 2015; 85: 126–37. doi: 10.1016/j.appet.2014.11.012
Nijs IMT, Franken IHA, Muris P. Food-related stroop interference in obese and normal-weight individuals: behavioral and electrophysiological indices. Eat Behav. 2010;11:258–65. doi: 10.1016/j.eatbeh.2010.07.002
Stingl KT, Kullmann S, Ketterer C, Heni M, Häring HU, Fritsche A, Preissl H. Neuronal correlates of reduced memory performance in overweight subjects. NeuroImage. 2012;60:362–69. doi: 10.1016/j.neuroimage.2011.12.012
Eisenstein SA, Gredysa DM, Antenor-Dorsey JA et al. Insulin, central dopamine d2 receptors, and monetary reward discounting in obesity. PLoS One. 2015. doi: 10.1371/journal.pone.0133621
Bloemendaal L, Ijzerman RG, Kulve JS, Barkhof F, Diamant M, Veltman DJ, Duinkerken E. Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis. 2016;31:621–29. doi: 10.1007/s11011-016-9792-3
Gunstad J, Strain G, Devlin MJ et al. Improved memory function 12 weeks after bariatric surgery. Surg Obes and Relal Dis. 2011;7:465–72. doi: 10.1016/j.soard.2010.09.015
Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, Nuutila P. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One. 2012. doi: 10.1371/journal.pone.0031089
Ziauddeen H, Alonso-Alonso M,Hill JO, Kelley M,Khan NA. Obesity and the neurocognitive basis of food reward and the control of intake. AdvNutr. 2015;6:474–86. doi: 10.3945/an.115.008268
Hendrikse JJ, Cachia RL, Kothe EJ, McPhie S, Skouteris H, Hayden MJ. Attentional biases for food cues in overweight and individuals with obesity: a systematic review of the literature. Obes Rev. 2015; 16: 424–32. doi: 10.1111/obr.12265
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Jaqueline Peixoto Lopes, Emanoele Anastácia da Silva Araujo Melo, Frederico Barreto Kochem, Ana Carolina Nader Vasconcelos Messias, Marco Orsini, Victor Hugo do Vale Bastos, Julio Guilherme Silva, Cristiane Sousa Nascimento Baez Garcia, Luciana Moisés Camilo, Mauricio de Sant Anna Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are authorized for non-exclusive distribution of the version of the work published in this journal (eg, publishing in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.