Acute cardiovascular responses and changes in autonomic modulation in an inspiratory muscle training session: a pilot study

Authors

DOI:

https://doi.org/10.33233/fb.v24i6.5569

Keywords:

physical therapy cardiovascular, autonomic nervous system, inspiratory exercise

Abstract

Introduction: Inspiratory muscle training (IMT) has been used in healthy individuals to improve physical performance. However, cardiovascular responses from IMT have not yet been well elucidated. Objective: To describe the acute cardiovascular responses and changes in autonomic modulation resulting from a moderate-intensity inspiratory muscle training session. Methods: This is an observational and cross-sectional study conducted with a convenience sample composed of young adult individuals. The study consisted of a protocol lasting 25 minutes, with ten minutes of rest (pre-IMT), 5 minutes of IMT and a ten-minute recovery period (post-IMT), with verification of heart rate (HR), systolic (SBP), diastolic (DBP) and mean (DBP) blood pressure, double product (SD) and subjective sensation of exertion (Borg). The IMT was performed using a digital device with a load of 50% of the maximal inspiratory pressure (MIP). The assessment of cardiovascular autonomic modulation was performed by analyzing the heart rate variability (HRV) in the time (DT) and frequency (DF) domains. For data analysis and comparison between pre-IMT, IMT and post-IMT periods, double-entry ANOVA was used for measurements and adopted as significance when P < 0.05. Results: 17 individuals with a mean age of 26.40 ± 6.11 years participated in the study, 13 (77%) were female. During the performance of the IMT, it can be observed that the individuals reached on average 46% of the maximum HR. Regarding the hemodynamic variables, significant differences were observed when comparing the periods before IMT vs. IMR for HR, SBP, DBP, MBP, SD and Borg (p < 0.05), and significance between the periods IMT vs. post IMT for HR, SBP, MBP and SD variables (p < 0.05). Significance was also verified between pre-IMT vs. post IMT only for the subjective sensation of effort. Regarding HRV, significant differences were observed between pre-IMT vs. IMT in the DT for RR intervals, and between the periods IMT vs. post IMT in DF for the low frequency and high frequency components (p < 0.05). Conclusion: An IMT session with 50% of MIP is able to promote important increases in cardiovascular variables with increased blood pressure and heart rate and subjective sensation of exertion, as well as reduced parasympathetic activity.

Author Biographies

Thaisa Sarmento dos Santos, IFRJ

Grupo de Estudos em Reabilitação na Alta Complexidade (GERAC – IFRJ), Programa de Iniciação Científica Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), RJ, Brasil

Katia Martins de Moura Barbosa, IFRJ

Grupo de Estudos em Reabilitação na Alta Complexidade (GERAC – IFRJ), Programa de Iniciação Científica Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), RJ, Brasil

Marco Orsini, UNIG

Instituto de Psiquiatria da Universidade Federal do Rio de Janeiro (IPUB/UFRJ), Departamento de Neurologia Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil

Stéphanie Raposo Gomes, IFRJ

Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), RJ, Brasil

Thiago de Mello Tavares, UNC

Universidade do Contestado, Mafra, SC, Brasil

Priscila Enomoto Velame, EMESCAM

Escola Superior de Ciências da Santa Casa de Misericórdia (EMESCAM) Vitória, ES, Brasil

Cristiane Sousa Nascimento Baez Garcia, IFRJ

Curso de Fisioterapia do Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Docente Permanente Programa de Mestrado Profissional para Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho (IBCCF – UFRJ), RJ, Brasil

Luciana Moisés Camilo, IFRJ

Curso de Fisioterapia do Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ),  Docente Permanente Programa de Mestrado Profissional para Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho (IBCCF – UFRJ), RJ, Brasil

Mauricio de Sant Anna Jr, IFRJ

Curso de Fisioterapia do Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ),  Docente Permanente Programa de Mestrado Profissional para Formação para a Pesquisa Biomédica, Instituto de Biofísica Carlos Chagas Filho (IBCCF – UFRJ), RJ, Brasil

References

Brum PC, Forjaz CL, Tinucci T, Negrão CE. Adaptações agudas e crônicas do exercício físico no sistema cardiovascular. Rev Paul Educ Fís. 2004;18(1):21-31.

Dempsey JA, Lee R, Rodman J, Miller J, Smith C. Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol. 2006;151(2-3):242-50. doi: 10.1016/j.resp.2005.12.015

Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol. 2011;9(3):1025-80. doi: 10.1002/cphy.c180008

De Troyer A, Esterme M. Functional anatomy of the respiratory muscle. Clin Chest Med, 1988;9(2):175-93.

De Troyer A. Mechanics of the chest wall muscle. In: Miller AD, Bianchu AL, Bishop BP, eds. Neural control of the respiratory muscles. New York: CRC Press. 1997. p.59-73. doi: 10.1002/cphy.c100009

Epstein S. An overview of respiratory muscle function. Clin Chest Med, 1994;15(4):619-39.

Poole DC, Farkas GA, Powers SK, Reid MB. Diaphragm structure and function in health and disease. Med Sci Sports Exerc, 1997;29(6): 738-54. doi: 10.1097/00005768-199706000-00003

Polla B, Antona DG, Bottinelli R, Reggiani C. Respiratory muscle fibers: specialization and plasticity. Thorax. 2004;59:808-17. doi: 10.1136/thx.2003.009894

Robertson CH, Foster GH, Gregory H, Johnson RL. The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance. J Clin Invest. 1977;59(1):31-42. doi: 10.1172/JCI108619

Harms CA, St Croix CM, Pegelow D, Dempsey JA et al. Effects of respiratory muscle work on exercise performance. J Appl Physiol. 2000, 89(1):131-38. doi: 10.1152/jappl.2000.89.1.131

Harms CA, Wetter TJ, McClaran SR, Pegelow D, Nickele GA, Nelson WB, et al. Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J Appl Physiol. 1998;85(2):609-18. doi: 10.1152/jappl.1998.85.2.609

Hartz CS, Lopes CR, Batista J, Moreno MA. Effect of Inspiratory Muscle Training on Performance of Handball Athletes. Journal of human kinetics. 2018, 63(1):43-51. doi: 10.2478/hukin-2018-0005

Leith DE, Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol. 1976;41(4):508-16. doi: 10.1152/jappl.1976.41.4.508

Weiner P, Magadle RM,Massarwa F, Beckerman M, Berar-Yanay N. Influence of gender and inspiratory muscle training on the perception of dyspnea in patients with asthma. Chest. 2002;122(1):197-201. doi: 10.1378/chest.122.1.197

Chiappa GR, Roseguini BT, Vieira PJC, Alves CN, Tavares A, Winkelmann ER et al. Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure. J Am Coll Cardiol. 2008;51(17): 1663-71. doi: 10.1016/j.jacc.2007.12.045

Dall’Ago P, Chiappa GRS, Guths H, Stein R, Ribeiro JP. Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial. J Am Coll Cardiol. 2006;47(4):757-63. doi: 10.1016/j.jacc.2005.09.052

Gosselink R, Decramer M. Inspiratory muscle training: where are we? Eur Respir J. 1994;7:2103–05. doi: 10.1183/09031936.94.07122103

Suzuki S, Sato M, Okubo T. Expiratory muscle training and sensation of respiratory effort during exercise in normal subjects. Thorax. 1995;50(4):366-70. doi: 10.1136/thx.50.4.366

Plentz RDM, da Silva VG, Dipp T. Treinamento muscular inspiratório para o controle autonômico de indivíduos saudáveis. Fisioter Pesqui. 2014;28. doi: 10.1590/1809-2950/17015425032018

Sonetti DA, Pegelow DF, Dempsey JA. Effects of respiratory muscle training versus placebo on endurance exercise performance. Resp Physiol. 2001;127.2-3:185-99. doi: 10.1016/s0034-5687(01)00250-x

Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719-27. doi: 10.1590/s0100-879x1999000600007

Sociedade Brasileira de Pneumologia e Tisiologia. Diretrizes para testes de função pulmonar. J Bras Pneumol. 2002;28(3):1-238.

Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354-81.

Rogers B, Schaffarczyk M, Gronwald T. Estimation of Respiratory Frequency in Women and Men by Kubios HRV Software Using the Polar H10 or Movesense Medical ECG Sensor during an Exercise Ramp. Sensors (Basel). 2022 Sep 21;22(19):7156. doi: 10.3390/s22197156

Umpierre D, Stein R. Efeitos hemodinâmicos e vasculares do treinamento resistido: implicações na doença cardiovascular. Arq Bras Cardiol. 2007;89(4):256-62. doi: 10.1590/S0066-782X2007001600008

Romer LM, Mcconnell AK, Jones DA. Effects of inspiratory muscle training on time-trial performance in trained cyclists. J Sports Sci, 2002;20(7):547-90. doi: 10.1080/026404102760000053

Williams JS, Wongsathikun J, Boon SM Acevedo EO. Inspiratory muscle training fails to improve endurance capacity in athletes. Med Sci Sports Exerc. 2002;34(7):119498. doi: 10.1097/00005768-200207000-00022

Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392-400. doi: 10.1136/bjsm.2008.050799

Pinheiro FA, Viana B; Pires FO. Percepção subjetiva de esforço como marcadora da duração tolerável de exercício. Motricidade. 2014;10(2):100-06. doi: 10.6063/motricidade.10(2).2267

Mehlsen J, Pagh K, Nielsen JS, Sestoft L, Nielsen SL. Heart rate response to breathing: dependency upon breathing pattern. Clin Physiol. 1987;7(2): 115-24. doi: 10.1111/j.1475-097x.1987.tb00153.x

Neff RA, Pagh K, Nielsen JS, Sestoft L, Nielsen SL. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res. 2003;93(6):565-72. doi: 10.1161/01.RES.0000090361.45027.5B

Pathak CL. Autoregulation of chronotropic response of the heart through pacemaker stretch. Cardiology. 1973;58(1):45-64. doi: 10.1159/000169618

St Croix CM, Morgan BJ, Thomas JW, Dempsey JA. Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J Physiol. 2000;529(2):493-504. doi: 10.1111/j.1469-7793.2000.00493.x

Sheel WA, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol. 2001;537(1):277-89. doi: 10.1111/j.1469-7793.2001.0277k.x

Sheel WA, Derchak, Jacques AJ, Dempsey JA SHEEL, A. William, et al. Threshold effects of respiratory muscle work on limb vascular resistance. Am J Physiol Heart Circ Physiol. 2002;282(5):H1732-H1738. doi: 10.1152/ajpheart.00798.2001

Hill JM. Discharge of group IV phrenic afferent fibers increases during diaphragmatic fatigue. Brain Res. 2000;856(1-2):240-44. doi: 10.1016/s0006-8993(99)02366-5

Published

2024-01-06