Effects of a CrossFit® session on redox state markers
Original article - e235600 - Published 2024, Oct 1st
DOI:
https://doi.org/10.33233/rbfex.v23i2.5600Keywords:
oxidative stress, circuit-based exercise, high-intensity interval trainingAbstract
Background: CrossFit® is a type of high-intensity functional training that may have health benefits. The modality has also been criticized due to the hypothesis that it could increase the risk of injuries due to oxidative stress generated by the intensity of the exercises. However, there are few studies evaluating oxidative stress in its practitioners. Objective: To evaluate the redox state in trained and non-trained adults, of both sexes, submitted to a high-intensity protocol named 'Cindy'. Methods: We evaluated 19 participants of a Crossfit® program, divided into beginners and experienced, women and men. For characterization, we evaluated body composition, maximal strength and aerobic capacity. For redox state evaluation, participants performed Cindy and had blood samples collected at pre-exercise and 30 minutes post-exercise, through biomarkers such as: SOD, GPx, FRAP and TBARS. Results: At the post-30 moment, there was a significant increase of GPx in the general population and, according to gender, this increase was in women (PRE 40.0 ± 3.9 and POS 46.7 ± 8.1), but not among men (PRE 36.4 ± 8.7 and POS 40.7 ± 5.7); we observed significant reduction of SOD, especially in novices (PRE 3273.1 ± 414.8 and POS 2378.1 ± 781.9); FRAP increased significantly (PRE 84.09 ± 20.49 and POS 106.27 ± 28.64), being this phenomenon observed in both sexes and experience levels; TBARS remained unchanged. Conclusion: A Cindy session promoted GPx and FRAP increase, SOD reduction and TBARS maintenance in its practitioners.
References
Gomes JH, Mendes RR, Franca CS, Da Silva-Grigoletto ME, Pereira da Silva DR, Antoniolli AR, et al. Acute leucocyte, muscle damage, and stress marker responses to high-intensity functional training. PLoS One. 2020 Dec 3;15(12):e0243276. doi: 10.1371/journal.pone.0243276
Ben-Zeev T, Okun E. High-Intensity Functional Training: Molecular Mechanisms and Benefits. Neuromolecular Med. 2021 Sep 1;23(3):335–8. doi: 10.1007/s12017-020-08638-8
Timón R, Olcina G, Camacho-Cardeñosa M, Camacho-Cardenosa A, Martinez-Guardado I, Marcos-Serrano M. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol Sport. 2019;36(3):283–9. doi: 10.5114/biolsport.2019.85458
Barranco-Ruiz Y, Villa-González E, Martínez-Amat A, Da Silva-Grigoletto ME. Prevalence of injuries in exercise programs based on Crossfit®, Cross training and high-intensity functional training methodologies: a systematic review. J Hum Kinet. 2020;73:251–65. doi: 10.2478/hukin-2020-0006
Bergeron MF, Nindl BC, Deuster PA, Baumgartner N, Kane SF, Kraemer WJ, et al. Consortium for health and military performance and American College of Sports Medicine Consensus Paper on extreme conditioning programs in military personnel. Curr Sports Med Rep. 2011;10(6):383–9. doi: 10.1249/JSR.0b013e318237bf8a
Kliszczewicz B, John QC, Daniel BL, Gretchen OD, Michael ER, Kyle TJ. Acute exercise and oxidative stress: CrossFitTM vs. Treadmill Bout. J Hum Kinet. 2015;47(1):81–90. doi: 10.1515/hukin-2015-0064
Meyer J, Morrison J, Zuniga J. The benefits and risks of crossfit: a systematic review. Workplace Health Saf. 2017;65(12):612–8. doi: 10.1177/2165079916685568
Minghelli B, Vicente P. Musculoskeletal injuries in Portuguese CrossFit practitioners. J Sports Med Phys Fitness. 2019;59(7). doi: 10.23736/S0022-4707.19.09367-8
Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 2020;9(5):415–25. doi: 10.1016/j.jshs.2020.04.001
Juturu V, Sahin K, Pala R, Tuzcu M, Ozdemir O, Orhan C, et al. Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res. 2016;9:147–54. doi: 10.2147/JIR.S110873
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35:101480. doi: 10.1016/j.redox.2020.101480
Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19(1):101–6. doi: 10.1038/nm.3019
Butcher S, Judd T, Benko C, Horvey K, Pshyk A. Relative intensity of two types of crossfit exercise: acute circuit and high-intensity interval exercise. Journal of Fitness Research [Internet]. 2015;4(2):3-15. [cited 2024 August 12]. Available from: https://www.researchgate.net/publication/281240359_Relative_Intensity_of_Two_Types_of_CrossFit_Exercise_Acute_Circuit_and_High-Intensity_Interval_Exercise
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1). doi: 10.1186/s12970-018-0242-y
Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504. doi: 10.1079/BJN19780152
Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–81. Available from: https://pubmed.ncbi.nlm.nih.gov/7402053/
Dias RMR, Avelar A, Menêses AL, Salvador EP, Silva DRP da, Cyrino ES. Segurança, reprodutibilidade, fatores intervenientes e aplicabilidade de testes de 1-RM. Motriz: Revista de Educação Física. 2013 Mar;19(1):231–42. doi: 10.1590/S1980-65742013000100024
Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo Intermittent Recovery Test. Sports Medicine. 2008;38(1):37–51. doi: 10.2165/00007256-200838010-00004
Glassman G. Metabolic Conditioning. The CrossFit Journal Article [Internet]. 2003;(3):1–4. [cited 2024 April 15]. Available from: https://brokenscience.org/wp-content/uploads/2024/06/Jun03_metab_cond.pdf
Kliszczewicz B, Snarr R, Esco M. Metabolic and cardiovascular response to the crossfit workout “Cindy”: a pilot study. J Sport Human Perf. 2014;2(2). doi: 10.12922/jshp.v2i2.38
Tibana R, Sousa N, Prestes J, Voltarelli F. Lactate, heart rate and rating of perceived exertion responses to shorter and longer duration CrossFit® training sessions. J Funct Morphol Kinesiol. 2018;3(4):60. doi: 10.3390/jfmk3040060
Falk Neto JH, Tibana RA, de Sousa NMF, Prestes J, Voltarelli FA, Kennedy MD. Session rating of perceived exertion is a superior method to monitor internal training loads of functional fitness training sessions performed at different intensities when compared to training impulse. Front Physiol. 2020;11. doi: 10.3389/fphys.2020.00919
Tibana RA, Sousa NMF, Prestes J, Nascimento DC, Ernesto C, Falk JH, et al. Is perceived exertion a useful indicator of the metabolic and cardiovascular responses to a metabolic conditioning session of functional fitness? Sports. 2019;7(7):161. doi: 10.3390/sports7070161
Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109–15. Available from: https://pubmed.ncbi.nlm.nih.gov/11708692/
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8. doi: 10.1016/0003-2697(79)90738-3
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1). doi: 10.1006/abio.1996.0292
McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22). Available from: https://pubmed.ncbi.nlm.nih.gov/5389100/
Sies H, Koch OR, Martino E, Boveris A. Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett. 1979;103(2). doi: 10.1016/0014-5793(79)81346-0
Quindry J, Miller L, McGinnis G, Kliszczewiscz B, Slivka D, Dumke C, et al. Environmental temperature and exercise-induced blood oxidative stress. Int J Sport Nutr Exerc Metab. 2013;23(2). doi: 10.1123/ijsnem.23.2.128
Panza VP. Efeito do consumo de chá verde no estresse oxidativo em praticantes de exercício resistido [Dissertação]. Florianópolis: UFSC; 2007. [cited 2024 July 20]. Available from: https://bdtd.ibict.br/vufind/Record/UFSC_59147e25852b7bdbc40a5a3c3cd39f28
Araújo MB, Prada FJA, Mello MAR. Estresse oxidativo no exercício, modelos animais e intensidade do esforço Conceito de Estresse Oxidativo. Motriz, Rio Claro. 2006;12. Available from: https://www.periodicos.rc.biblioteca.unesp.br/index.php/motriz/article/view/423
Santos PMF, Souza LMV, Santos MB, Araújo JES, Santos JL, Dória IB, et al. The acute effect of rast test on oxidative stress and muscle damage markers in young athletes. J Phys Educ. 2018;29(1). doi: 10.4025/jphyseduc.v29i1.2980
Petry E, Alvarenga M, Cruzat V, Tirapegui J. Exercício físico e estresse oxidativo: mecanismos e efeitos. Revista Brasileira de Ciência e Movimento. 2010;18(4):90-99. doi: 10.18511/rbcm.v18i4.1363
Barbosa KBF, Costa NMB, Alfenas RCG, Paula SO, Minim VPR, Bressan J. Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr. 2010;23(4):629–43. doi: 10.1590/S1415-52732010000400013
Barreiros ALBS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quim Nova. 2006;29(1):113–23. doi: 10.1590/S0100-40422006000100021
Groussard C, Rannou-Bekono F, Machefer G, Chevanne M, Vincent S, Sergent O, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol. 2003;89(1):14–20. doi: 10.1007/s00421-002-0767-1
Gonçalves ÁC, Rodrigues LR, Terra MP, Sasaki JE, Portari GV. Exercício aeróbio exaustivo aumenta o estresse oxidativo em corredores fundistas treinados. RBPFEX - Revista Brasileira de Prescrição e Fisiologia do Exercício [Internet]. 2019;13(83):493–500. [cited 2024 Aug 12]. Available from: http://www.rbpfex.com.br/index.php/rbpfex/article/view/1704
Vazatta R, Tangerino LCS, Araújo GG, Melo MP, Cavaglieri CR, Verlengia R. Exercício físico e mecanismo antioxidante de defesa. Saúde em Revista. 2009;11(28–29):7–15. doi: 10.15600/2238-1244/sr.v11n28-29p7-15
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biology. 2020. doi: 10.1016/j.redox.2020.101508
Boeno FP, Ramis TR, Farinha JB, Lemos LS de, Medeiros N da S, Ribeiro JL. Efeito agudo do exercício de força com restrição do fluxo sanguíneo sobre parâmetros antioxidantes em indivíduos jovens saudáveis. J Vasc Bras. 2018;17(2). doi: 10.1590/1677-5449.011017
Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;1576–81. doi: 10.1097/00005768-200009000-00008
Morillas-Ruiz J, Zafrilla P, Almar M, Cuevas MJ, López FJ, Abellán P, et al. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists. Eur J Appl Physiol. 2005;95(5–6):543–9. doi: 10.1007/s00421-005-0017-4
Morillas-Ruiz JM, Villegas García JA, López FJ, Vidal-Guevara ML, Zafrilla P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clinical Nutrition. 2006;25(3):444–53. doi: 10.1016/j.clnu.2005.11.007
Spanidis Y, Stagos D, Orfanou M, Goutzourelas N, Bar-or D, Spandidos D, et al. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res. 2017;31(3):582–94. doi: 10.1519/JSC.0000000000001584
Lima D, Voltarelli F, Kietzer K. Verificação de um biomarcador de estresse oxidativo em atletas de natação em período específico de treinamento físico. Revista Brasileira de Prescrição e Fisiologia do Exercício [Internet]. 2015;9:97–104. [cited 2024 Aug 15]. Available from: https://www.rbpfex.com.br/index.php/rbpfex/article/view/746
Varamenti E, Tod D, Pullinger SA. Redox homeostasis and inflammation responses to training in adolescent athletes: a systematic review and meta-analysis. Sports Med Open. 2020;6(1):34. doi: 10.1186/s40798-020-00262-x
Thirupathi A, Pinho RA, Ugbolue UC, He Y, Meng Y, Gu Y. Effect of running exercise on oxidative stress biomarkers: a systematic review. Front Physiol. 2021;11. doi: 10.3389/fphys.2020.610112
Rodriguez MC, Rosenfeld J, Tarnopolsky MA. Plasma malondialdehyde increases transiently after ischemic forearm exercise. Med Sci Sports Exerc. 2003 Nov;35(11):1859–65. doi: 10.1249/01.MSS.0000093609.75937.70
Fortes M, Marson R, Martinez E. Comparação de desempenho físico entre homens e mulheres: revisão de literatura. Revista Mineira de Educação Física [Internet]. 2015;23:54–69. Available from: https://periodicos.ufv.br/revminef/article/view/9964
Hilário G, Abdalla PP, Carvalho A dos S, Júnior JRG. Condicionamento físico de participantes de crossfit®. RBPFEX - Revista Brasileira de Prescrição e Fisiologia do Exercício [Internet]. 2022;16:173–81. [cited 2024 August 15]. Available from: http://www.rbpfex.com.br/index.php/rbpfex/article/view/2541
Moran S, Booker H, Staines J, Williams S. Rates and risk factors of injury in CrossFitTM: a prospective cohort study. J Sports Med Phys Fitness. 2017 Jul;57(9). doi: 10.23736/S0022-4707.16.06827-4
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brenna Mirelle Barbosa Bastos, João Henrique Gomes, Ana Mara de Oliveira e Silva, Renata Rebello Mendes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms: Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License which allows the sharing of work with acknowledgment of authorship and initial publication in this magazine; Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal; Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and citation of published work (See The Effect of Open Access).