Efeito de diferentes níveis de restrição de fluxo sanguíneo sobre a hemodinâmica muscular

Autores

DOI:

https://doi.org/10.33233/rbfex.v20i6.4878

Palavras-chave:

espectroscopia de luz próxima ao infravermelho; dispositivos de oclusão vascular; treinamento de força

Resumo

Introduction: Resistance exercise with blood flow restriction (BFR) is an effective method to promote muscle strength gains and hypertrophy. However, little is known about the effects of different BFR levels on hemodynamic responses. Objective: To verify whether the different blood flow restriction pressures applied to the upper limb cause acute changes in vascular microcirculation in young, healthy male adults. Methods: Ten young male visited the laboratory on four occasions. In the first visit, after 10-min rest in supine position, the brachial artery occlusion pressure (AOP) was identified with a Doppler ultrasound. Thereafter, the participants were submitted to a protocol consisting of 1 min for baseline measurements, 2 min of BFR, and 2 min after cuff deflation. It was used a cuff placed on the proximal portion of the forearm and inflated with pressures equivalents to 30% (30BFR), 50% (50BFR) 80% (80BFR), or 100% (100BFR) of the AOP in a random order in separate days. Introdução: O exercício contrarresistência com restrição do fluxo sanguíneo (RFS) é um método eficaz para ganho de força e hipertrofia muscular. No entanto, pouco se sabe sobre os efeitos dos diferentes níveis de RFS nas respostas hemodinâmicas. Objetivo: Verificar se as diferentes pressões de restrição ao fluxo sanguíneo aplicadas no membro superior causam alterações na microcirculação vascular em adultos jovens saudáveis do sexo masculino. Métodos: Dez jovens do sexo masculino visitaram o laboratório em quatro ocasiões. Na primeira visita, após 10 min de repouso em decúbito dorsal, a pressão de oclusão da artéria braquial (POA) foi identificada através de ultrassom com Doppler. Posteriormente, os participantes foram submetidos a um protocolo que consistia de 1 min para as medidas basais, 2 min de RFS e 2 min após a liberação da restrição sanguínea. Foi utilizado um manguito colocado na porção proximal do antebraço e inflado com pressões equivalentes a 30% (30RFS), 50% (50RFS) 80% (80RFS) ou 100% (100RFS) do POA em dias separados. As medições do índice de saturação do tecido (IST), oxihemoglobina, desoxihemoglobina e hemoglobina total foram coletadas continuamente usando espectrometria de infravermelho próximo. Resultados: Uma ANOVA de duas vias com medidas repetidas demonstrou 1) uma diminuição significativa no IST em todas as condições, com maior queda em 100RFS; 2) um aumento significativo na oxihemoglobina em todas as condições, exceto 100RFS; 3) um aumento semelhante na desoxihemoglobina em todas as condições; 4) um aumento significativo na hemoglobina total em todas as condições, principalmente em 30RFS e 50RFS. Conclusão: As pressões relativas adotadas demonstraram que as alterações hemodinâmicas não ocorrem linearmente com o nível de pressão imposto pelo manguito insuflado.

Biografia do Autor

Ramon Franco Carvalho, UERJ

Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ Brasil

Paulo Sergio Chagas Gomes, UERJ

Laboratório Crossbridges, Instituto de Educação Física e Desportos, UERJ, Rio de Janeiro, RJ, Brasil

Márcio Lopes Fernandes Jr., Universidade Estácio de Sá

Universidade Estácio Sá, Campus Duque de Caxias 2, Duque de Caxias, Rio de Janeiro, Brasil

Cláudia de Mello Meirelles, EsEFEx

Seção de Pesquisa e Extensão, Escola de Educação Física do Exército (EsEFEx), Rio de Janeiro, RJ, Brasil, Laboratório Crossbridges, UERJ, Rio de Janeiro, RJ

Referências

Lixandrão ME, Ugrinowitsch C, Laurentino G, Libardi CA, Aihara AY, Cardoso FN, et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol 2015;115(12):2471-80. doi: 10.1007/s00421-015-3253-2

Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med 2018;48(2):361-78. doi: 10.1007/s40279-017-0795-y

Martín-Hernández J, Marín PJ, Menéndez H, Ferrero C, Loenneke JP, Herrero AJ. Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports 2013;23(2):1-7. doi: 10.1111/sms.12036

Vechin FC, Libardi CA, Conceição MS, Damas FR, Lixandrão ME, Berton RPB, et al. Comparisions between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res 2015;29(4):1071-6. doi: 10.1088/0022-3727/8/4/003

Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 2011;111(10):2525-33. doi: 10.1007/s00421-011-1873-8

Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):61-5. doi: 10.1152/jappl.2000.88.1.61

Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 2002;86(4):308-14. doi: 10.1007/s00421-001-0561-5

Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 2004;54(6):585-92. doi: 10.2170/jjphysiol.54.585

Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves Junior M, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 2012;44(3):406-12. doi: 10.1249/MSS.0b013e318233b4bc

Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses 2012;78(1):151-4. doi: 10.1016/j.mehy.2011.10.014

Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol 2006;101:1616-22. doi: 10.1152/japplphysiol.00440.2006

Lopes KG, Bottino DA, Farinatti P, Souza MGC, Maranhão PA, Araujo CMS, et al. Strength training with blood flow restriction – a novel therapeutic approach for older adults with sarcopenia? A case report. Clin Interv Aging 2019;14:1461-9. doi: 10.2147/CIA.S206522

Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000;32(12):2035-9. doi: 10.1097/00005768-200012000-00011

Loenneke JP, Thiebaud RS, Abe T, Bemben MG. Blood flow restriction pressure recommendations: The hormesis hypothesis. Med Hypotheses 2014;82(5):623-6. doi: 10.1016/j.mehy.2014.02.023

Mattocks KT, Jessee MB, Counts BR, Buckner SL, Mouser JG, Dankel SJ, et al. The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol Behav 2017;171:181-6. doi: 10.1016/j.physbeh.2017.01.015

Mouser JG, Dankel SJ, Jessee MB, Mattocks KT, Buckner SL, Counts BR, et al. A tale of three cuffs: the hemodynamics of blood flow restriction. Eur J Appl Physiol 2017;117(7):1493-9. doi: 10.1093/icvts/ivx022

Mouser JGACJ, Black CD, Bemben DA, Bemben MG. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion. Clin Physiol Funct Imaging 2018;38(3):425-30. doi: 10.1111/cpf.12432

Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 2013;43(3):179-94. doi: 10.1007/s40279-013-0017-1

Gerovasili V, Dimopoulos S, Tzanis G, Anastasiou-Nana M, Nanas S. Utilizing the vascular occlusion technique with NIRS technology. Int J Ind Ergon 2010;40(2):218-22. doi: 10.1016/j.ergon.2009.02.004

Kilgas MA, McDaniel J, Straves J, Pollock BS, Singer TJ, Elmer SJ. Limb blood flow and tissue perfusion during exercise with blood flow restriction. Eur J Appl Physiol 2019;119(2):377-87. doi: 10.1007/s00421-018-4029-2

Pereira MIR, Gomes, PSC, Bhambhani, YN. A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. Sports Med 2007;37:615-24. doi: 10.2165/00007256-200737070-00005

Espírito-Santo HA, Daniel F. Calcular e apresentar tamanhos do efeito em trabalhos científicos (1): As limitações do p < 0,05 na análise de diferenças de médias de dois grupos. Rev Port Inv Comp Soc 2015;1(1):3-16. doi: 10.7342/ismt.rpics.2015.1.1.14

Espírito-Santo HA, Daniel F. Calcular e apresentar tamanhos do efeito em trabalhos científicos (3): Guia para reportar os tamanhos do efeito para análises de regressão e ANOVAs Calculating and reporting effect sizes on scientific papers (3): Guide to report regression models and ANOVA. Rev Port Inv Comp Soc 2018;4(1):43-60. doi: 10.7342/ismt.rpics.2018.4.1.72

Vincent WJ, Weir JP. Statistics in Kinesiology. 4th edition ed. [S. l.]: Human Kinetics, Inc., 2011. E-book.

Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat Methods 2009;8(2):article26. doi: 10.22237/jmasm/1257035100

Padilla J, Johnson BD, Newcomer SC, Wilhite DP, Mickleborough TD, Fly AD, et al. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus. Cardiovasc Ultrasound 2008;6(1):44. doi: 10.1186/1476-7120-6-44

Hunt JEA, Stodart C, Ferguson RA. The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction. Eur J Appl Physiol 2016;116(7):1421-32. doi: 10.1007/s00421-016-3399-6

Crenshaw AG, Hargens AR, Gershuni DH, Rydevik B. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand 1988;59(4):447-51. doi: 10.3109/17453678809149401

Ryan TE, Brophy P, Lin C, Hickner RC, Neufer PD. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: a comparison with in situ measurements. J Physiol 2014;592(15):3231-41. doi: 10.1113/jphysiol.2014.274456

Soares RN, McLay KM, George MA, Murias JM. Differences in oxidative metabolism modulation induced by ischemia/reperfusion between trained and untrained individuals assessed by NIRS. Physiol Reports 2017;5(19):1–7. doi: 10.14814/phy2.13384

Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol and Occup Physiol 1992;64(6):552-6. doi: 10.1007/BF00843767

Green DJ, Dawson EA, Groenewoud HMM, Jones H, Thiissen DHJ. Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension 2014;63(2):376-82. doi: 10.1161/HYPERTENSIONAHA.113.02044

Doshi SN, Naka KK, Payne N, Jones CJH, Ashton M, Lewis MJ, Goodfellow J. Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. Clin Sci 2001;101(6):629-35. doi: 10.1042/cs1010629

Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ Alexander RW, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol - Cell Physiol 1995;269(6):38-46. doi: 10.1152/ajpcell.1995.269.6.c1371

Gnasso A, Carallo C, Irace C, Franceschi MS, Mattioli PL, Motti C, Cortese C. Association between wall shear stress and flow-mediated vasodilation in healthy men. Atherosclerosis 2001;156(1):171-6. doi: 10.1016/S0021-9150(00)00617-1

Bopp CM, Townsend DK, Barstow TJ. Characterizing near-infrared spectroscopy responses to forearm post-occlusive reactive hyperemia in healthy subjects. Eur J Appl Physiol 2011;111(11):2753-61. doi: 10.1007/s00421-011-1898

Publicado

2022-02-01

Edição

Seção

Artigos originais